(Lec 9) Multi-Level Min III: Role of Don't Cares

▼ What you know

- ▶ 2-level minimization a la ESPRESSO
- **► Multi-level minimization:**
 - > Boolean network model,
 - > Algebraic model for factoring
 - > Rectangle covering for extraction

■ What you don't know

- ▶ Don't cares in a multi-level network are very different
- ▶ They arise naturally as part of the structure of the network model
- ▶ They can help a great deal in simplifying the network
- ▶ They can be very hard to get, algorithmically

© R. Rutenbar 2001,

CMU 18-760, Fall 2001 1

Copyright Notice

© Rob A. Rutenbar 2001 All rights reserved.

You may not make copies of this material in any form without my express permission.

© R. Rutenbar 2001,

Where Are We?

■ In logic synthesis--how don't cares are now very different beasts

	M	Т	W	Th	F	
Aug	27	28	29	30	31	1
Sep	3	4	5	6	7	2
	10		12	13	14	3
	17	18	19	20	21	4
Oct	24	25	26	27	28	5
		2	3	4	5	6
	8	9	10	Ш	12	7
	15	16	17	18	19	8
	22	23	24	25	26	9
	29	30	31	1	2	10
Nov	5	6	7	8	9	П
	12	13	14	15	16	12
Thnxgive	19	20	21	22	23	13
	26	27	28	29	30	14
Dec	3	4	5	6	7	15
	10	П	12	13	14	16

Introduction
Advanced Boolean algebra
JAVA Review
Formal verification
2-Level logic synthesis

Multi-level logic synthesis

Technology mapping
Placement
Routing
Static timing analysis
Electrical timing analysis
Geometric data structs & apps

© R. Rutenbar 2001,

CMU 18-760, Fall 2001 3

Readings/Deadlines/Projects

▼ De Micheli

▶ Section 8.4 is about don't cares in multilevel model

▼ Deadlines

- ▶ Today, Thu Oct II: Paper I Review, Rudell's Dynamic Ordering due
- ▶ Thursday Oct 18: HW3 (2-level, multi-level synthesis) due
 - > As always, check webpage for bugfixes, updates...
 - ▷ There are some bugs in eqns for Prob #I, fixed shortly...
 The state diagrams are correct as is.

▼ Project #2

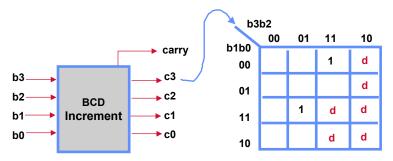
▶ We'll do the overview next Tuesday

© R. Rutenbar 2001,

Don't Cares: 2-level

▼ In basic digital design...

- ▶ We told you these were just input patterns that could never happen
- ► This allowed you to do more simplifications, since you could add a 1 or 0 to the Kmap for that input depending on what was easier to simplify
- ▶ Standard example: BCD incrementer circuit



Patterns b3 b2 b1 b0 = 1010, 1011, 1100, 1101, 1110, 1111 cannot happen

© R. Rutenbar 2001,

CMU 18-760, Fall 2001 5

Don't Cares: Multi-level

▼ To say this differently

- ▶ In basic 2-level designs somebody told you what inputs wouldn't happen...
- ...and you just believed them!

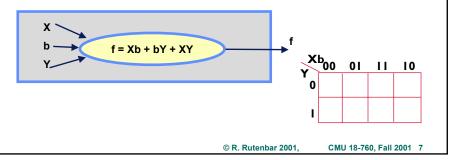
■ What's different in multi-level?

- ► There can still be these sorts of don't cares at the primary inputs of the Boolean logic network....
- ▶ ...but there can also be don't cares arising from structure of the network
- ► These latter kind are very useful for simplifying the individual vertices in the Boolean logic network (ie you call ESPRESSO which can handle 2level don't cares)
- ▶ But, you have to go find these don't cares explicitly

© R. Rutenbar 2001,

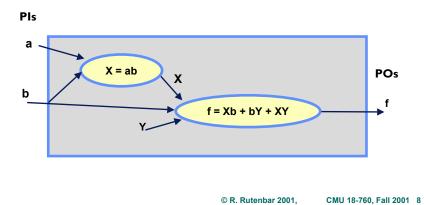
Informal Tour of DCs in Multilevel Networks

- **▼** Suppose we have a Boolean network...
 - ▶ And we are looking at node "f" in that network
- **▼** Can we say anything about don't cares for node f?
 - **▶** NO
 - ▶ We don't know any "context" for surrounding parts of network
 - ▶ As far as we can tell, all patterns of inputs (X,b,Y) are possible

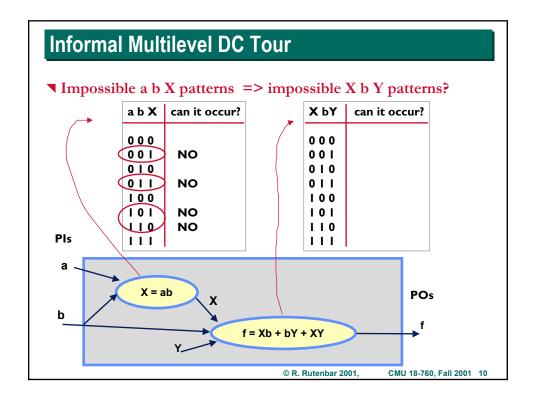


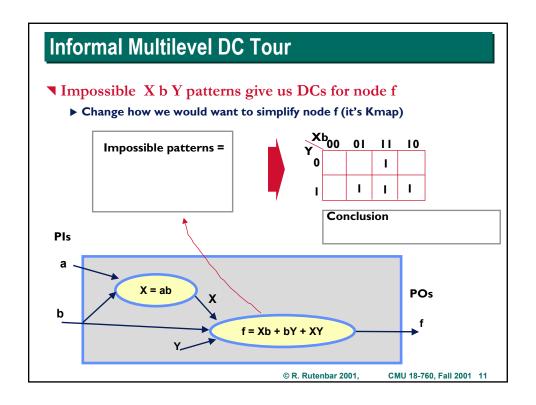
Informal Multilevel DC Tour

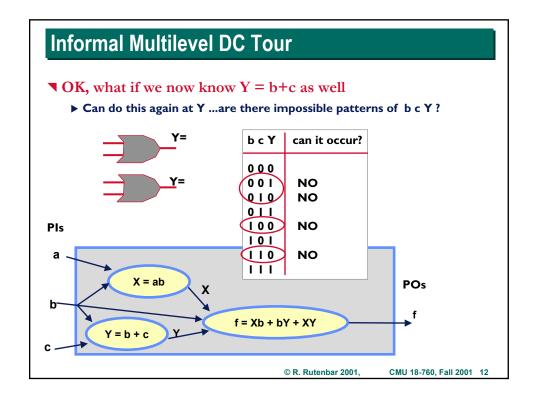
- **▼** OK, suppose we know this about input X to f
 - ▶ Node X is actually a•b
 - ▶ Now can we say something about DCs for node f...?
 - **▶ YES**

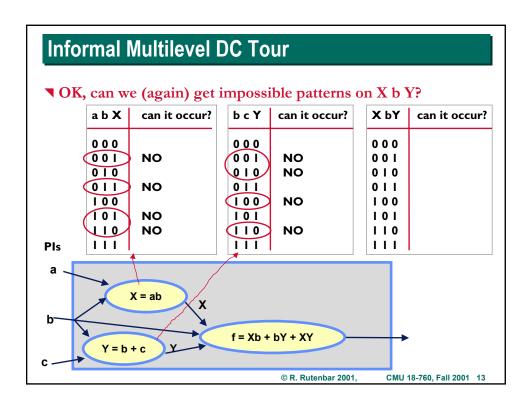


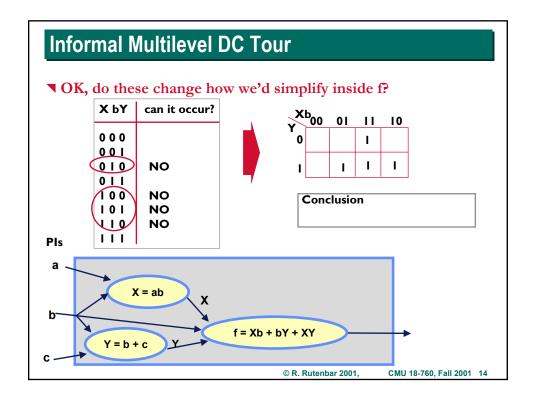






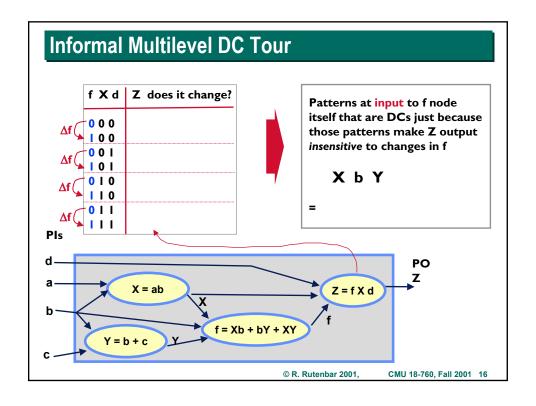


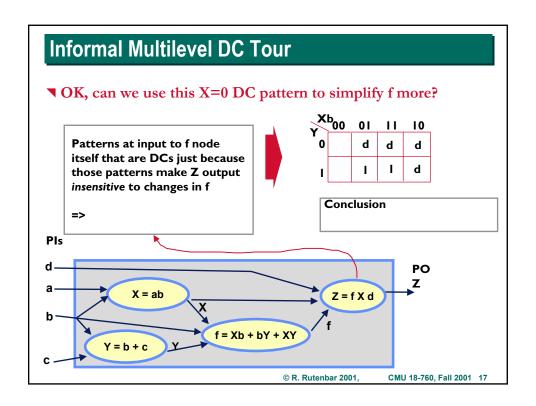


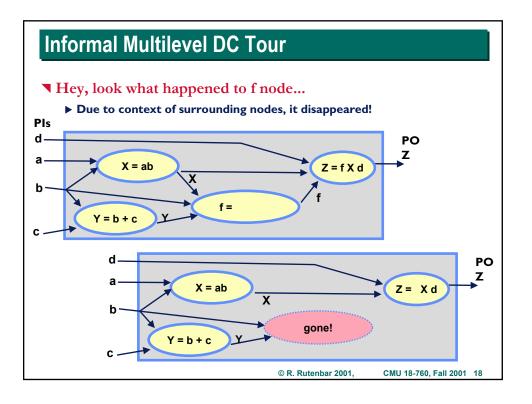


Informal Multilevel DC Tour ▼OK, now suppose f is not a primary output, Z is... ▶ Question: when does a change in the output of node f actually propagate through to change the primary output Z, ie, the output of the overall Boolean logic network ▶ Or, reverse question: when does it not matter what f is...? ▶ Let's go look at patterns of f X d at node Z... Pls d. PO Z X = abZ = f X db f = Xb + bY + XYY = b + c

© R. Rutenbar 2001,

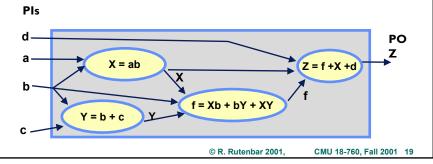






Informal Multilevel DC Tour

- \blacksquare OK, suppose instead that PO Z = f + X + d (OR not AND)
 - ▶ What changes?
 - ▶ Answer: no patterns at f inputs that make Z insensitive to changes in f
 - ► There are still impossible patterns of (f X d) but you cannot specify any of them exactly only knowing the (X b Y) inputs to f
 - ▶ f doesn't dissappear, it still simplifies to f = b + X
- Network context matters a lot here!



Formal View of These DCs

- **▼** Overall, there are 3 types of formal DCs...
 - ► Satisfiability don't cares
 - ▶ Patterns that can't occur at the inputs to a vertex...
 - ► Controllability don't cares
 - ▷ Global, external: patterns that can't happen at primary inputs to our overall Boolean logic network
 - ▶ Observability don't cares
 - > Patterns at input of a vertex that prevent that outputs of the network from being sensitive to changes in output of that vertex
 - > Pattern that "mask" outputs
- Let's see if we can clarify where these each come from...

© R. Rutenbar 2001,

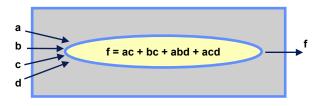
Don't Care Types: Satisfiability

■ Satisfiability Don't Cares

- ▶ Happen because of structure of Boolean Logic Network
- ▶ We don't treat the network as one big logic diagram, but rather, as a set of separate, connected logic blocks (vertices)
- ▶ SDCs specify the constraints on these internal connections

▼ Example

▶ Start with just one vertex in network

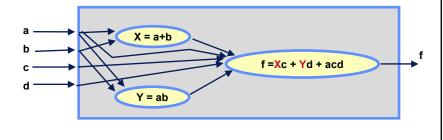


© R. Rutenbar 2001,

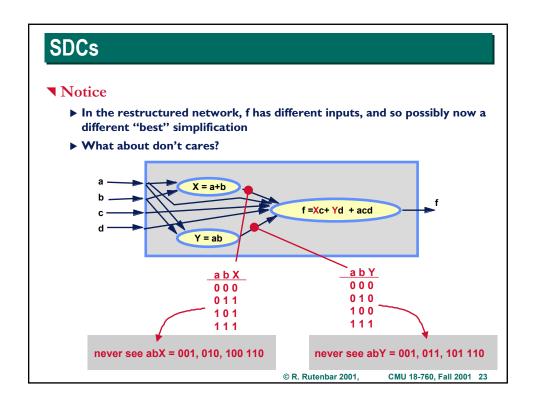
CMU 18-760, Fall 2001 21

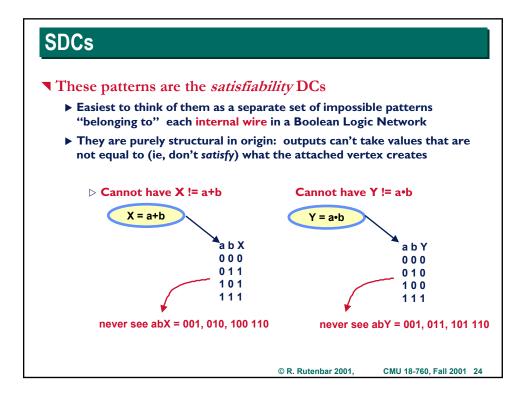
SDCs

- Now, assume we extract some subexpressions
 - ► Extract X=a+b, Y = a•b
 - ▶ This changes structure of network
 - ▶ There are now new nodes, feeding node that creates f



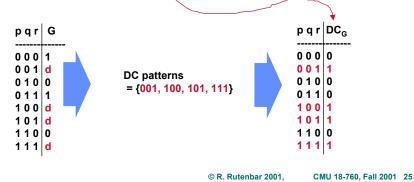
© R. Rutenbar 2001,





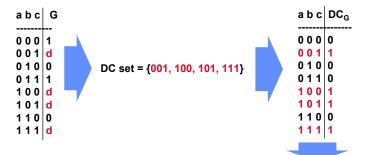
Aside: How Will We Actually Represent DCs?

- Some confusing notation and terminology
 - ▶ You're probably used to seeing don't cares just listed in the truth table
 - ▶ But, the way we will usually represent these is either:
 - > As a set of patterns of 0s Is on a node's inputs that cannot happen
 - ▷ As a function of these inputs that makes a I just for those patterns that cannot happen; DC_G == I just for impossible patterns for G

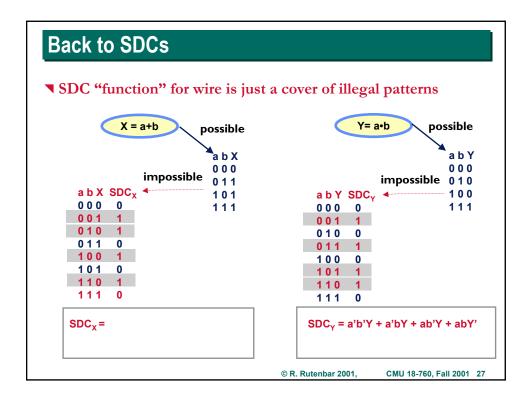


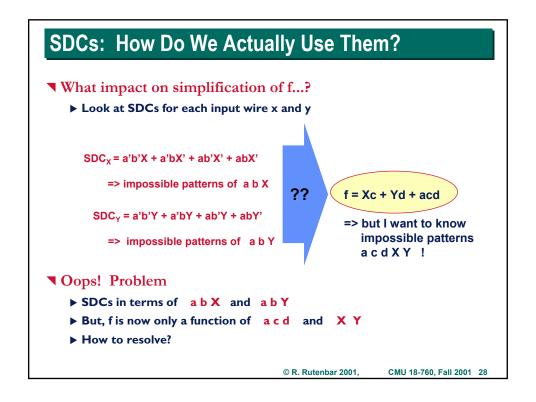
Aside: Representing Don't Cares

- **▼** Representation
 - ► Will even frequently see the DC function actually written in terms of an SOP cover, a Boolean expression



© R. Rutenbar 2001, CMU 18-760, Fall 2001 26





SDCs

- Need to quantify out the "b" in SDCs, but how?
 - ▶ Just try each way and see what happens, for insight
 - ► Recall: given f(x,y,z,w)

$$\triangleright$$
 ($\exists x f$)(y,z,w) = $f_x + f_{x'}$ (existential quantification)

$$\triangleright$$
 $(\forall x f)(y,z,w) = f_x \cdot f_{x'}$ (universal quantification)

▼ In English

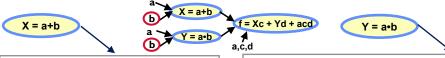
- ► Existential quantification: removes var x, resulting function is true for (y,z,w) whenever there is some pattern, either (x=1,y,z,w) OR (x=0,y,z,w) that made original f == 1
- ► Universal quantification: removes var x, resulting function is true for (y,z,w) whenever both patterns (x=1,y,z,w) AND (x=0,y,z,w) made original function f==1

© R. Rutenbar 2001,

CMU 18-760, Fall 2001 29

SDCs

▼ Try quantifying wrt b, both ways...



$$SDC_x = a'b'X + a'bX' + ab'X' + abX'$$

$$(SDC_X)_b =$$

$$(SDC_X)_{b'} =$$

$$(\exists b SDC_X)(a,X) = (SDC_X)_b + (SDC_X)_{b'} =$$

$$(\forall b SDC_X)(a,X) = (SDC_X)_b \cdot (SDC_X)_b$$
, =

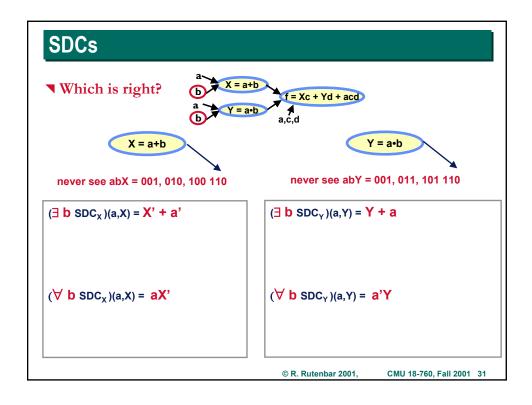
$$SDC_Y = a'b'Y + a'bY + ab'Y + abY'$$

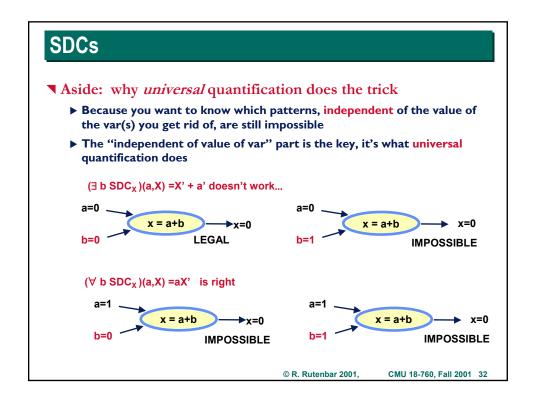
$$(SDC_Y)_b =$$
 $(SDC_Y)_b =$

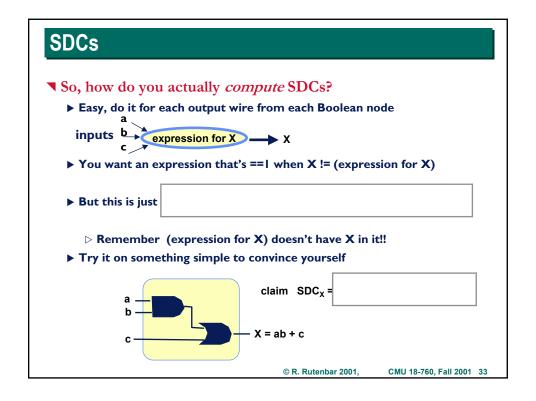
$$(\exists b SDC_Y)(a,Y) = (SDC_Y)_b + (SDC_Y)_b =$$

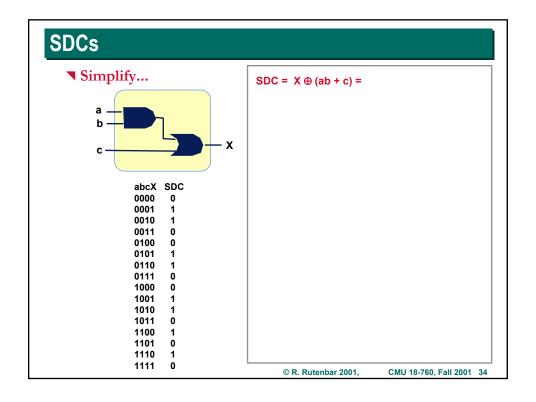
$$(\forall b SDC_Y)(a,Y) = (SDC_Y)_b \cdot (SDC_Y)_b$$

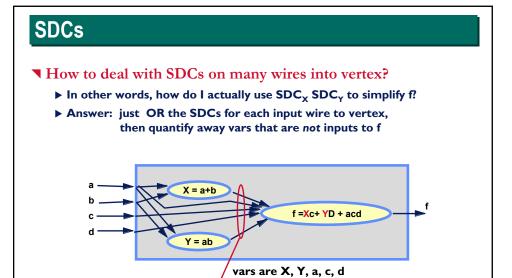
© R. Rutenbar 2001,











SDC = $(\forall \text{ vars not input to f})(\sum_{\text{inputs i}} \text{SDCi})$

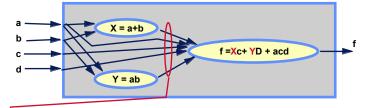
=patterns that cannot occur on f inputs

© R. Rutenbar 2001, CMU

CMU 18-760, Fall 2001 35

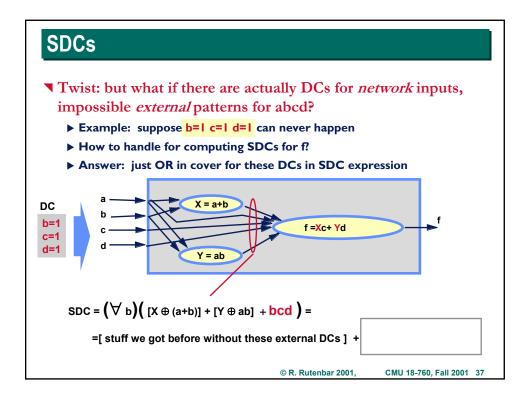
▼ Try it and see

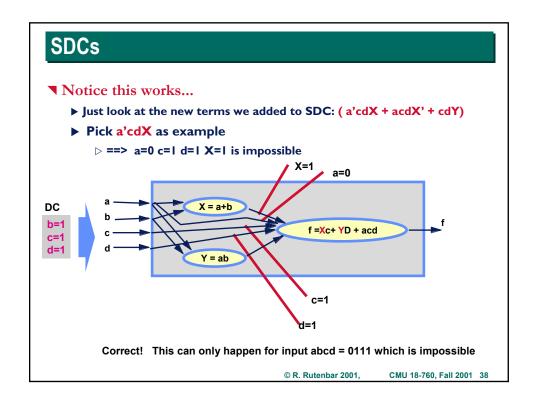
▶ Note we can ignore SDCs on a, c, d inputs to f since they are primary inputs (ie, $a \oplus$ (expression for a) = $a \oplus a = 0$, etc.



$$SDC = (\forall b)([X \oplus (a+b)] + [Y \oplus ab]) = ([X \oplus (a+b)] + [Y \oplus ab])_{b=1} \cdot ([X \oplus (a+b)] + [Y \oplus ab])_{b=0}$$

© R. Rutenbar 2001,





Controllability Don't Cares

- **■** Defines those input patterns that cannot happen for specific vertices, or for entire network
 - ▶ But, we've already seen these!
 - ► External global CDCs: come from outside for entire network, like b=1 c=1 d=1 is impossible, in our example
 - ▶ Internal local CDCs: just patterns that cannot appear at any vertex

=
$$(\forall \text{ vars not inputs })(\sum_{\text{vertex}} (\text{local SDCs}) + \text{ext. global CDC})$$
inputs

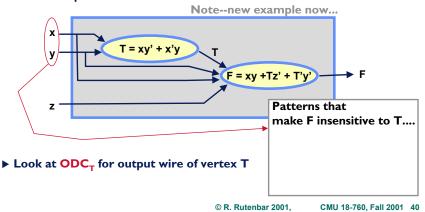
- **▼** SDCs versus CDCs ...?
 - ▶ SDCs: think of as belonging to each internal wire in network
 - ▶ CDCs: think of as belonging to each internal vertex in network

© R. Rutenbar 2001,

CMU 18-760, Fall 2001 39

Observability Don't Cares

- **▼ODCs** belong to *each* output of a vertex in network
 - ▶ Patterns that will make this output not observable at network output
 - "Not observable" means a change 0<->I on this vertex output doesn't not change ANY network output, for this pattern
 - ▶ New example



ODCs

▼ In English...

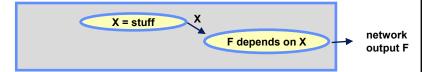
- ► ODC for T are patterns of inputs to the vertex for T (patterns of x,y) such that we can compute F without caring about what T is
- ► Since F= xy + Tz' + T'y', observe
 - \triangleright If x=1 y=1 then F = I + Tz' + T'y' = I = independent of T
 - > Note there are patterns of other vars that do this too:
 - \triangleright If z=1 y=1 then F = xy +T•0 + T'•0 = xy = independent of T
 - \triangleright If z=0 y=0 then F = xy + T•I + T'•I = xy + T + T' = I = indep. of T
- ► So, our guess is that ODC_T = xy
 - > This is the only pattern that depends just on vars input to T
 - > For this pattern, network output insensitive to changes in T
- ▶ How to compute, mechanically?

© R. Rutenbar 2001,

CMU 18-760, Fall 2001 41

ODCs

■ When is network output F *insensitive* to internal var X?



▼ Be precise

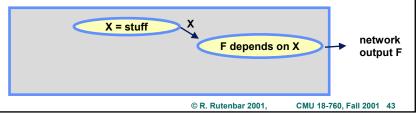
- ▶ Insensitive means X changes => but F never changes
- ▶ More precisely: if we specify F as function of X, then $F_X = F_{X'}$
- ▶ So, what patterns of the other inputs to F cause F(... X=0)=F(...X=1 ...)?
- ▶ When these patterns are applied, changing X does not ever matter to output at F
- ▶ But we've already seen something close to this...

© R. Rutenbar 2001,

ODCs

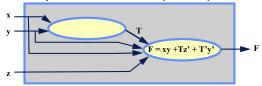
- **■** Boolean difference, ∂F/ ∂X
 - ▶ Defined as $\partial F/\partial X = F_X \oplus F_{X'}$
 - ▶ Recall we observed that patterns that make $\partial F/\partial X = I$ correspond to patterns where a change in X causes some change in F

- **▼** Stated differently
 - ▶ Boolean difference ∂F/• ∂X is a function that is I for those patterns that make X observable



ODCs

- But we want patterns that make vertex output X *unobservable*, since we want don't care patterns
 - \blacktriangleright So, if ∂ F/ ∂ X is patterns that make X observable
 - ▶ ...then $(\overline{\partial F/\partial X})$ is patterns that make X unobservable
 - ▶ Back to our example: want to look at $(\partial F/ \partial T)$ here

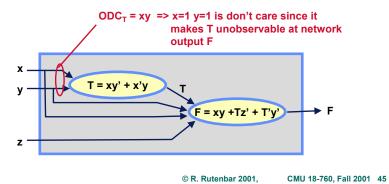


© R. Rutenbar 2001, CMU 18-760, Fall 2001 44

ODCs

■ So ODC_T = xy + xz' + y'z' + x'yz

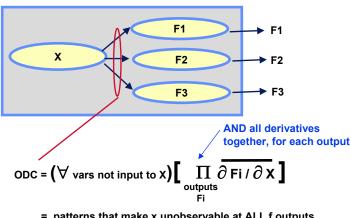
- ▶ But, same problem: can't use this to simplify vertex for T since T is only a function of x and y
- ▶ What to do?
- ▶ Same as before: universal quantification over vars not input to T
- ▶ In this case, want $(\forall z)(xy + xz' + y'z' + x'yz) = xy$ which is correct



ODCs

■ More general: what if many network outputs?

▶ Only patterns that are unobservable at ALL outputs can be ODCs

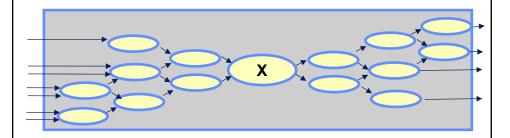


= patterns that make x unobservable at ALL f outputs

CMU 18-760, Fall 2001 46 © R. Rutenbar 2001,

Don't Cares, In General

▼ Why is getting these things so *very hard*?



- ▶ Because real networks are big, and the vertex X you want to simplify may be very far from the primary inputs, and primary outputs
- ▶ Inputs to your vertex are function of a lot of stuff
- ▶ Network outputs are functions of your vertex and lots of other stuff
- ▶ Representing all this stuff can be explosively large, even with BDDs

© R. Rutenbar 2001,

CMU 18-760, Fall 2001 47

Getting Network DCs

■ How do people do it

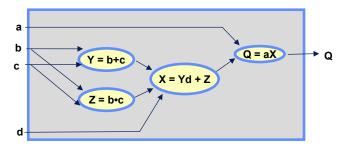
- ▶ In general, they don't
 - Usually suffice with getting the local SDCs, which just requires looking at outputs of antecedent vertices and computing the SDC patterns, which is easy (no big search)
 - ▷ There are also incremental, vertex-by-vertex algorithms that walk the network to compute full CDC set for X, and full ODC set for X, but these can be very expensive in space
- ▶ Also, some tricks called FILTERS
 - You want to find patterns you can use as don't cares to simplify vertex X
 - ▷ Instead of finding all such DC patterns, can restrict search to avoid patterns that cannot possibly be useful to simplify X
 - > Such algorithms called "filters" -- they get rid of DCs you don't need
- ▶ See De Michelli for details about all this stuff
 - > For us, knowing the straightforward brute force formula is OK

© R. Rutenbar 2001,

Example

- Now know enough to do this

 ▼
 - ▶ Simplify node X inside this network
 - ▶ Assume pattern a=0 d=0 never occurs at network input



▼ How?

- ► Compute SDC for X, including external global DC=a'd'
- ▶ Compute ODC for X by doing (∂ Q/ ∂ X)'
- You get to use anyplace SDC_X +ODC_X == I as a don't care for X

© R. Rutenbar 2001,

CMU 18-760, Fall 2001 49

Summary

- New kinds of don't cares in multi-level networks

 New kinds of don't cares in multi-level networks
 - ▶ Byproducts of the network model
 - ▶ It's not all one big function, it's a bunch of little functions (vertices) connected by wires
 - ► Satisfiability DCs: structural in origin, can't have output of a vertex not equal to the expression for that vertex
 - ➤ Output DCs: some patterns make vertex output unobservable at network outputs
 - ► SDC + ODC: for any given vertex, can use this expression as places for don't cares to simplify the vertex function
- ▼ In practice
 - ▶ Very hard to get these, esp ODCs (see the book)
 - ▶ Usually just use the local SDC from antecedent vertices
 - ► Also, there are algorithms (filters) that can just go find useful don't cares for simplification

© R. Rutenbar 2001,