(Lec 9) Multi-Level Min lll: Role of Don’t Cares

X What you know
» 2-level minimization a la ESPRESSO
» Multi-level minimization:
> Boolean network model,
> Algebraic model for factoring

> Rectangle covering for extraction

N What you don’t know
» Don’t cares in a multi-level network are very different
» They arise naturally as part of the structure of the network model
» They can help a great deal in simplifying the network
» They can be very hard to get, algorithmically

© R. Rutenbar 2001, CMU 18-760, Fall 2001 1

Copyright Notice

© Rob A. Rutenbar 2001
All rights reserved.

You may not make copies of this
material in any form without my
express permission.

© R. Rutenbar 2001, CMU 18-760, Fall 2001 2

Page 1

Where Are We?

n logic synthesis--how don’t cares are now very different beasts

M T W Th F

Aug27 28 29 [30 [31 |1 Introduction

Sep[3 [4 [5 [6 J7 |2 Advanced Boolean algebra
o Tir iz 13 [i4 |3 JAVA Review
07 _Tig T19 20 [21 |4 Formal verification
24 25 [26 27 28 |5

2-Level logic synthesis

Oct[l [2 3 [4 5 6

(8 [9 Tio TNNMNI2 |7 .

Technology mappin

15 IAM7 s IFIM s L ey mEpEnE
PPEl23 24 25 26 |9

Multi-level logic synthesis

R .
29 Bo Br [z Jio NE
Nov[5 J6 7 J8 [o]y~ c@tcemmganalyss
(12 13 14 15 [i6 |12 ectrical timing analysis

Thnxgive[19_ 20 PINIFYIIFE 13 Geometric data structs & apps
26 [27 [28 [29 [30 |14
Dec[3 [4 [5 [6 [7 |15
(o Jir 12 13 Ji4 16

© R. Rutenbar 2001, CMU 18-760, Fall 2001 3

Readings/Deadlines/Projects

N De Micheli

» Section 8.4 is about don’t cares in multilevel model

N Deadlines
» Today, Thu Oct I 1: Paper | Review, Rudell’s Dynamic Ordering due
» Thursday Oct 18: HW3 (2-level, multi-level synthesis) due
> As always, check webpage for bugfixes, updates...

> There are some bugs in eqns for Prob #1, fixed shortly...
The state diagrams are correct as is.

N Project #2

» We’ll do the overview next Tuesday

© R. Rutenbar 2001, CMU 18-760, Fall 2001 4

Page 2

Don’t Cares: 2-level

n basic digital design...
» We told you these were just input patterns that could never happen

» This allowed you to do more simplifications, since you could add a | or 0
to the Kmap for that input depending on what was easier to simplify

» Standard example: BCD incrementer circuit

b3b2
00 01 11 10

’—> carry b1b0
00 1 d
b3 » __ ,c3
01 d
b2—» —_ c2
e 1 d d
b1—>| Increment | — c1 11
bo—* —>c0 10 d d

Patterns b3 b2 b1 b0 =1010, 1011, 1100, 1101, 1110, 1111 cannot happen

© R. Rutenbar 2001, CMU 18-760, Fall 2001 5

Don’t Cares: Multi-level

N To say this differently
» In basic 2-level designs somebody told you what inputs wouldn’t happen...

» ...and you just believed them!

N What’s different in multi-level?
» There can still be these sorts of don’t cares at the primary inputs of the
Boolean logic network....
» ...but there can also be don’t cares arising from structure of the network

» These latter kind are very useful for simplifying the individual vertices in
the Boolean logic network (ie you call ESPRESSO which can handle 2-
level don’t cares)

» But, you have to go find these don’t cares explicitly

© R. Rutenbar 2001, CMU 18-760, Fall 2001 6

Page 3

Informal Tour of DCs in Multilevel Networks

N Suppose we have a Boolean network...

» And we are looking at node “f’ in that network

N Can we say anything about don’t cares for node f?
» NO
» We don’t know any ‘“context” for surrounding parts of network

» As far as we can tell, all patterns of inputs (X,b,Y) are possible

X
ST E
Y/ Xboo ol

Y 1110
0
1
© R. Rutenbar 2001, CMU 18-760, Fall 2001 7
Informal Multilevel DC Tour
N OK, suppose we know this about input X to f
» Node X is actually a*b
» Now can we say something about DCs for node f...?
» YES
Pls
a <
\
X =ab
& X POs
b f
Y/
© R. Rutenbar 2001, CMU 18-760, Fall 2001 8

Page 4

Informal Multilevel DC Tour

N Go list all the input/output patterns for node X

Va

a -
\
b
f

f= Xb+bY+XY —>

ab X | can it occur?

——e———0 00 O

———0 0 ==—00
-0 =0 -0 -0

y—7

© R. Rutenbar 2001, CMU 18-760, Fall 2001 9

Informal Multilevel DC Tour

N Impossible a b X patterns => impossible X b Y patterns?

ab X | can it occur? X bY | can it occur?
000 000
ool J NO 001
010 010
o1 1) NO ol1
100 100
(W NO 101
101 NO 110
Pls 111 111
a <
\
X=ab X POS
b f
Y/
© R. Rutenbar 2001, CMU 18-760, Fall 2001 10

Page 5

Informal Multilevel DC Tour

N Impossible X b Y patterns give us DCs for node f
» Change how we would want to simplify node f (it’s Kmap)

Xb

Impossible patterns = y00 oF 11 10
0 I

Conclusion

Pls

\
@ X POs
b f
Y/

© R. Rutenbar 2001, CMU 18-760, Fall 2001 11

Informal Multilevel DC Tour

N OK, what if we now know Y = b+c as well
» Can do this again at Y ...are there impossible patterns of bc Y ?

j_Y= bcY | can it occur?
0
- '

o\o

Y= (NO
NO

|
00 NO

Pls

© R. Rutenbar 2001, CMU 18-760, Fall 2001 12

Page 6

Informal Multilevel DC Tour

N OK, can we (again) get impossible patterns on X b Y?

abX can it occur? bcY | can it occur? X bY | can it occur?
000 000 000
00l) NO <OOI NO 001
010 010 NO 010
o1l) NO 0l 0l
100 oo NO 100
(m NO 101 101
N1 04 NO (110) NO 110
Pls 111 111 111
4 ad
a <
\
Cxe 2
b—
f e
Cyevre Jr—
© R. Rutenbar 2001, CMU 18-760, Fall 2001 13

Informal Multilevel DC Tour

N OK, do these change how we’d simplify inside f?

X bY | can it occur?

Xb,
Y 00 ol 11 10
0 |

000
I
(ﬁb NO I RN

|
00 NO Conclusion
101 NO
| NO

© R. Rutenbar 2001, CMU 18-760, Fall 2001 14

Page 7

Informal Multilevel DC Tour

N OK, now suppose fis not a primary output, Z is...

» Question: when does a change in the output of node f
actually propagate through to change the primary output Z,
ie, the output of the overall Boolean logic network

» Or, reverse question: when does it not matter what f is...?

» Let’s go look at patterns of f X d at node Z...

Pls

d PO
e G
o T4
C/"

© R. Rutenbar 2001, CMU 18-760, Fall 2001 15

Informal Multilevel DC Tour

f X d | Z does it change?

Patterns at input to f node
000 itself that are DCs just because
AfC those patterns make Z output
insensitive to changes in f

XbyY

0
0
I -
|
|
=
=3 x=an) D ins
b— /!
Cr=xoebvexr)
c/-P

© R. Rutenbar 2001, CMU 18-760, Fall 2001 16

Page 8

Informal Multilevel DC Tour

N OK, can we use this X=0 DC pattern to simplify f more?

Xb

Y 00 ol 11 10
Patterns at input to f node 0 d| d d
itself that are DCs just because
those patterns make Z output | I I d

insensitive to changes in f

=

Conclusion

" > 4
c/‘V

— —
)
I e

PO

© R. Rutenbar 2001,

CMU 18-760, Fall 2001 17

Informal Multilevel DC Tour

N Hey, look what happened to f node...

» Due to context of surrounding nodes, it disappeared!

X —F
Cc /"

© R. Rutenbar 2001,

CMU 18-760, Fall 2001 18

Page 9

Informal Multilevel DC Tour

N OK, suppose instead that PO Z = f + X + d (OR not AND)
» What changes?
» Answer: no patterns at f inputs that make Z insensitive to changes in f

» There are still impossible patterns of (f X d) but you cannot specify any
of them exactly only knowing the (X b Y) inputs to f

» f doesn’t dissappear, it still simplifies to f=b + X

N Network context matters a lot here!

Pls

o ey
c/‘V

© R. Rutenbar 2001, CMU 18-760, Fall 2001 19

Formal View of These DCs

N Overall, there are 3 types of formal DCs...
» Satisfiability don’t cares
> Patterns that can’t occur at the inputs to a vertex...
> ... because of internal structure of multi-level logic
» Controllability don’t cares

> Global, external: patterns that can’t happen at primary inputs to
our overall Boolean logic network

> Local, internal: patterns that can’t happen at inputs to a vertex
» Observability don’t cares

> Patterns at input of a vertex that prevent that outputs of the
network from being sensitive to changes in output of that vertex

> Pattern that “mask’ outputs
N Let’s see if we can clarify where these each come from...

© R. Rutenbar 2001, CMU 18-760, Fall 2001 20

Page 10

Don’t Care Types: Satisfiability

N Satisfiability Don’t Cares
» Happen because of structure of Boolean Logic Network

» We don’t treat the network as one big logic diagram, but rather, as a
set of separate, connected logic blocks (vertices)

» SDCs specify the constraints on these internal connections
N Example

» Start with just one vertex in network

o f
T Qac+bc+abd+acd —>
c*?’

© R. Rutenbar 2001, CMU 18-760, Fall 2001 21

N Now, assume we extract some subexpressions
» Extract X=a+b, Y =a<b
» This changes structure of network

» There are now new nodes, feeding node that creates f

) ST

b —»

f
c > f=Xc+Yd+aD——>
d

© R. Rutenbar 2001, CMU 18-760, Fall 2001 22

Page 11

N Notice
» In the restructured network, f has different inputs, and so possibly now a
different “best” simplification

» What about don’t cares?

abX _aby

000 000

011 010

101 100

111 111
never see abX = 001, 010, 100 110 never see abY =001, 011, 101 110
© R. Rutenbar 2001, CMU 18-760, Fall 2001 23

N These patterns are the satisfiability DCs

» Easiest to think of them as a separate set of impossible patterns
‘“‘belonging to” each internal wire in a Boolean Logic Network

» They are purely structural in origin: outputs can’t take values that are
not equal to (ie, don’t satisfy) what the attached vertex creates

> Cannot have X != a+b Cannot have Y != a*b
\a b X aby
000 000
011 010
101 100
111 111
never see abX = 001, 010, 100 110 never see abY =001, 011, 101 110
© R. Rutenbar 2001, CMU 18-760, Fall 2001 24

Page 12

Aside: How Will We Actually Represent DCs?

N Some confusing notation and terminology
» You’re probably used to seeing don’t cares just listed in the truth table
» But, the way we will usually represent these is either:
> As a set of patterns of Os Is on a node’s inputs that cannot happen

> As a function of these inputs that makes a | just for those patterns

that cannot happen; DCg == | just for impossible patterns for G
bqrle pqr|DCg

000|1 000(0

gg;g DC patterns 8(1):) l1)

oroe ={001, 100, 101, 111} 011|0

100(d 1001

101|d 170la

11000 110|0

111|d 1111

© R. Rutenbar 2001, CMU 18-760, Fall 2001 25

Aside: Representing Don'’t Cares

N Representation

» Will even frequently see the DC function actually written in terms of an
SOP cover, a Boolean expression

abc| G abc|DCg
000(1 000|0
001|d 001|1
010(0 DC set = {001, 100, 101, 111} 010(0
0111 011|0
100|d 100[1
101|d 1011
110(0 1100
111|d 1111

DCG= ab’c + ab’'c + ab’'c + abc

© R. Rutenbar 2001, CMU 18-760, Fall 2001 26

Page 13

Back to SDCs

N SDC “function” for wire is just a cover of illegal patterns

Y:ssible sible

abX abyY
. . 000 000
impossible 011 impossible 010
abX SDCy < 101 abY SDCy <100
000 0 111 000 0 111
001 1 001 1
010 1 010 0
011 0 011 1
100 1 100 0
101 0 101 1
110 1 110 1
111 0 111 0
SDCy = SDCy = a’b’Y + a’bY + ab’Y + abY’
© R. Rutenbar 2001, CMU 18-760, Fall 2001 27

SDCs: How Do We Actually Use Them?

N What impact on simplification of f...?
» Look at SDCs for each input wire x and y

SDCy = a’b’X + a’bX’ + ab’X’ + abX’
=> impossible patterns of ab X

SDC, = a’b’Y + a’bY + ab’Y + abY’
Y => but | want to know

=> impossible patterns of abY impossible patterns
acdXyY !
N Oops! Problem
» SDCsintermsof abX and abyY
» But, fis now only a functionof acd and X Y

» How to resolve?

© R. Rutenbar 2001, CMU 18-760, Fall 2001 28

Page 14

X Need to quantify out the “b” in SDCs, but how?
» Just try each way and see what happens, for insight
» Recall: given f(x,y,z,w)

> (EI X f)(y,z,w) = f, +f, (existential quantification)
> (V x f)(y,z,w) = f, * f» (universal quantification)

N n English

» Existential quantification: removes var X, resulting function is true for
(y,z,w) whenever there is some pattern,
either (x=1,y,z,w) OR (x=0,y,z,w) that made original f ==

» Universal quantification: removes var X, resulting function is true for
(y,z,w) whenever both patterns
(x=1,y,z,w) AND (x=0,y,z,w) made original function f==1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 29

N Try quantifying wrt b, both ways...

SDCy = a’b’X + a’bX’ + ab’X’ + abX’ SDCy = a’b’Y + a’bY + ab’Y + abY’

(SDCy), = (SDCy), =

(SDCy)y = (SDCy)y =

(3 b SDCy)(a,X) = (SDCy), + (SDCy)y, =

(V b SDCy)(a,X) = (SDCy),, * (SDCy), =

(3b SDCy)(a,Y) = (SDCy), + (SDCy),, =

(Y b SDCy)(a,Y) = (SDCy)y * SDCy)y, =

© R. Rutenbar 2001, CMU 18-760, Fall 2001 30

Page 15

X Which is right?

never see abX = 001, 010, 100 110 never see abY =001, 011, 101 110
(3 b sbcy)aX) =X +a’ (@ bsbcy)aY)=Y +a
(V b sbcy)(a,x) = aX’ (Y b sbcy)a,y)= a’Y
© R. Rutenbar 2001, CMU 18-760, Fall 2001 31

N Aside: why universal quantification does the trick

» Because you want to know which patterns, independent of the value of
the var(s) you get rid of, are still impossible

» The “independent of value of var” part is the key, it’s what universal
quantification does

(3 b SDCy)(a,X) =X’ + a’ doesn’t work...

-
ST ST ST
v

LEGAL IMPOSSIBLE

a=0

b=0

(¥ b SDCy)(a,X) =aX’ is right

e T o S

IMPOSSIBLE IMPOSSIBLE

© R. Rutenbar 2001, CMU 18-760, Fall 2001 32

Page 16

SDCs

N So, how do you actually compute SDCs?

» Easy, do it for each output wire from each Boolean node
a

. R
inputs b—> — X
c_~

» You want an expression that’s ==1 when X != (expression for X)

» But this is just

> Remember (expression for X) doesn’t have X in it!!

» Try it on something simple to convince yourself

claim SDCy =
a
&=
c X=ab+c
© R. Rutenbar 2001, CMU 18-760, Fall 2001 33
N Simplify... SDC = X ® (ab + ¢) =
a
b
c X
abcX SDC
0000 0
0001 1
0010 1
0011 0
0100 0
o101 1
0110 1
0111 0
1000 0
1001 1
1010 1
1011 0
1100 1
1101 0
1110 1
111 0
© R. Rutenbar 2001, CMU 18-760, Fall 2001 34

Page 17

X How to deal with SDCs on many wires into vertex?
» In other words, how do | actually use SDC, SDC, to simplify f?

» Answer: just OR the SDCs for each input wire to vertex,
then quantify away vars that are not inputs to f

/vars are X, Y,a,c,d

SDC = (V vars not input to f)(Z SDCi)

inputs i

=patterns that cannot occur on f inputs

© R. Rutenbar 2001, CMU 18-760, Fall 2001 35

N Try it and see

» Note we can ignore SDCs on a, ¢, d inputs to f since they are primary
inputs (ie, a @ (expression fora) =a®a =0, etc.

spc = (V b)((X @ (a+b)] + [Y ® ab]) =
(X @ @+ + Y @ ab])p=q + (X @ (a+b)) + [Y @ 2]) =g

© R. Rutenbar 2001, CMU 18-760, Fall 2001 36

Page 18

N Twist: but what if there are actually DCs for network inputs,
impossible external patterns for abcd?

» Example: suppose b=1 c=I d=I can never happen

» How to handle for computing SDCs for f?

» Answer: just OR in cover for these DCs in SDC expression

DC

Q0T
mimnn
s Q= G §

SDC = (V b)([X @ (a+b)] + [Y ® ab] +bcd) =

=[stuff we got before without these external DCs] +

© R. Rutenbar 2001,

CMU 18-760, Fall 2001 37

N Notice this works...

» Just look at the new terms we added to SDC: (a’cdX + acdX’ + cdY)
» Pick a’cdX as example

> ==> a=0 c=| d=1 X=1 is impossible

[a0

o
1
-

Correct! This can only happen for input abcd = 0111 which is impossible

© R. Rutenbar 2001,

CMU 18-760, Fall 2001 38

Page 19

Controllability Don’t Cares

N Defines those input patterns that cannot happen for specific
vertices, or for entire network
» But, we’ve already seen these!

» External global CDCs: come from outside for entire network,
like b=1 c=1 d=I is impossible, in our example

» Internal local CDCs: just patterns that cannot appear at any vertex

= (V vars not inputs)(2 (local SDCs) + ext. global CDC)
vertex

inputs

N SDCs versus CDCs ...?

» SDCs: think of as belonging to each internal wire in network

» CDCs: think of as belonging to each internal vertex in network

© R. Rutenbar 2001, CMU 18-760, Fall 2001 39

Observability Don’t Cares

N ODCs belong to each output of a vertex in network

» Patterns that will make this output not observable at network output

> “Not observable” means a change 0<->1 on this vertex output doesn’t
not change ANY network output, for this pattern

» New example
Note--new example now...

A
vl T =<T ki "’>V

7

—> F

Patterns that
mabke F insensitive to T....

» Look at ODC; for output wire of vertex T

© R. Rutenbar 2001, CMU 18-760, Fall 2001 40

Page 20

In English...

» ODC for T are patterns of inputs to the vertex for T (patterns of x,y)
such that we can compute F without caring about what T is

» Since F=xy + Tz’ + T’y’, observe
> Ifx=1 y=1 then F=1+Tz+ Ty’ =l =independent of T
> Note there are patterns of other vars that do this too:
> If z=1 y=1 then F =xy +T*0+ T’<0 =xy =independentof T
> Ifz=0y=0 then F=xy + Tel + Tl =xy+T+ T =1 =indep.of T

» So, our guess is that ODC = xy
> This is the only pattern that depends just on vars input to T

> For this pattern, network output insensitive to changes in T

» How to compute, mechanically?

© R. Rutenbar 2001, CMU 18-760, Fall 2001 41

N When is network output F insensitive to internal var X?

network
F depends on X —> output F

X Be precise
» Insensitive means X changes => but F never changes
» More precisely: if we specify F as function of X, then Fy = Fy,
» So, what patterns of the other inputs to F cause F(... X=0)=F(...X=1 ...)?

» When these patterns are applied, changing X does not ever matter to
output at F

» But we’ve already seen something close to this...

© R. Rutenbar 2001, CMU 18-760, Fall 2001 42

Page 21

N Boolean difference, 0F/ 0 X
» Definedas 0 F/ 0 X = Fy @ Fy,

» Recall we observed that patterns that make 0 F/ 0 X = | correspond to
patterns where a change in X causes some change in F

x
—> § X —p f
y—* y—
OFIOx=y OFlox=y

N Stated differently

» Boolean difference ¢ OF/* OX is a function that is | for those patterns
that make X observable

network
F depends on X —> output F

© R. Rutenbar 2001, CMU 18-760, Fall 2001 43

N But we want patterns that make vertex output X unobservable,
since we want don’t care patterns

» So, if 0 F/ 0 X is patterns that make X observable
» ...then (O F/ 0 X) is patterns that make X unobservable
» Back to our example: want to look at (0 F/ 0 T) here

OFI0T=F,®F=

© R. Rutenbar 2001, CMU 18-760, Fall 2001 44

Page 22

N So ODC; =xy + x2’ + y’2’ + X’yz
» But, same problem: can’t use this to simplify vertex for T since T is only
a function of x and y
» What to do?
» Same as before: universal quantification over vars not input to T

» In this case, want (V z)(xy + xz’ + y’z’ +X’yz) = xy which is correct

ODC; =xy =>x=1y=1is don’t care since it
makes T unobservable at network
output F

© R. Rutenbar 2001, CMU 18-760, Fall 2001 45

N More general: what if many network outputs?
» Only patterns that are unobservable at ALL outputs can be ODCs

o
S
P

AND all derivatives
together, for each output

oDC = (‘v’ vars not input to X)[I10 FiIaX]

outputs
Fi

= patterns that make x unobservable at ALL f outputs

© R. Rutenbar 2001, CMU 18-760, Fall 2001 46

Page 23

Don’t Cares, In General

X Why is getting these things so very hard?

O¢
J
|

» Because real networks are big, and the vertex X you want to simplify
may be very far from the primary inputs, and primary outputs

» Inputs to your vertex are function of a lot of stuff
» Network outputs are functions of your vertex and lots of other stuff

» Representing all this stuff can be explosively large, even with BDDs
© R. Rutenbar 2001, CMU 18-760, Fall 2001 47

Getting Network DCs

N How do people do it

» In general, they don’t

> Usually suffice with getting the local SDCs, which just requires
looking at outputs of antecedent vertices and computing the SDC
patterns, which is easy (no big search)

> There are also incremental, vertex-by-vertex algorithms that walk
the network to compute full CDC set for X, and full ODC set for X,

but these can be very expensive in space
» Also, some tricks called FILTERS

> You want to find patterns you can use as don’t cares to simplify
vertex X

> Instead of finding all such DC patterns, can restrict search to avoid
patterns that cannot possibly be useful to simplify X

> Such algorithms called “filters” -- they get rid of DCs you don’t need
» See De Michelli for details about all this stuff
> For us, knowing the straightforward brute force formula is OK

© R. Rutenbar 2001, CMU 18-760, Fall 2001 48

Page 24

N Now know enough to do this
» Simplify node X inside this network

» Assume pattern a=0 d=0 never occurs at network input

fa=a0—+a

'/
d
N How?

» Compute SDC for X, including external global DC=a’d’

» Compute ODC for X by doing (0 Q/ 0 X)’
> You get to use anyplace SDC, +ODC, ==1 as a don’t care for X

© R. Rutenbar 2001, CMU 18-760, Fall 2001 49

N New kinds of don’t cares in multi-level networks
» Byproducts of the network model

» It’s not all one big function, it’s a bunch of little functions (vertices)
connected by wires

» Satisfiability DCs: structural in origin, can’t have output of a vertex not
equal to the expression for that vertex

» Output DCs: some patterns make vertex output unobservable at
network outputs

» SDC + ODC: for any given vertex, can use this expression as places for
don’t cares to simplify the vertex function
In practice
» Very hard to get these, esp ODCs (see the book)
» Usually just use the local SDC from antecedent vertices

» Also, there are algorithms (filters) that can just go find useful don’t
cares for simplification

© R. Rutenbar 2001, CMU 18-760, Fall 2001 50

Page 25

