
Page 1

© R. Rutenbar 2001 Fall 18-760 Page 1

(Lec 02) Programming Aside: Javatm(Lec 02) Programming Aside: Javatm

What you know
C/C++ programming
Probably some object-oriented design issues
Maybe already some Java (if so, this is review…)

What you don’t know
Java

Latest, greatest entrant in the language-wars
Subject of significant interest, investment, and hype

What we want to do here
Talk about the features in the language
Get you some basic familiarity
Show some examples
Do 760 Project 1 in Java

© R. Rutenbar 2001 Fall 18-760 Page 2

Copyright NoticeCopyright Notice

© Rob A. Rutenbar, 2001
All rights reserved.
You may not make copies of this
material in any form without my
express permission.

Page 2

© R. Rutenbar 2001 Fall 18-760 Page 3

HandoutsHandouts
Physical

Lecture 02 -- Java review

Electronic
Nothing today

© R. Rutenbar 2001 Fall 18-760 Page 4

Where Are We?Where Are We?
Doing some JAVA background you need for Project 1...

27 28 29 30 31
3 4 5 6 7

M T W Th F

10 11 12 13 14
17 18 19 20 21
24 25 26 27 28

Aug
Sep

Oct 1 2 3 4 5
8 9 10 11 12

15 16 17 18 19
22 23 24 25 26
29 30 31 1 2
5 6 7 8 9 Nov
12 13 14 15 16
19 20 21 22 23
26 27 28 29 30
3 4 5 6 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Introduction
Advanced Boolean algebra
JAVA Review
Formal verification
2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement
Routing
Static timing analysis
Electrical timing analysis
Geometric data structs & apps

Dec

Thnxgive

10 11 12 13 14 16

Page 3

© R. Rutenbar 2001 Fall 18-760 Page 5

Java -- Good ReferencesJava -- Good References
Two book suggestions

David Flanagan, JAVA in a Nutshell: A Desktop Reference Guide, O’Reilly,
2nd Edition, May 1997.

A good nuts and bolts reference with a lot of emphasis on how Java
differs from C and from C++.

Mary Campione and Kathy Walrath, The Java Tutorial: Object-Oriented
Programming for the Internet, (The JAVA Series), Addison Wesley, 1996.

Another good treatment from some Java folks at SUN, with good intro
stuff and lots of focus on network and internet-centric stuff.

© R. Rutenbar 2001 Fall 18-760 Page 6

Java -- Good ReferencesJava -- Good References
Web references on line

http://www.javasoft.com
The SUN main site for Java. You can see product info, download free
Java code, etc.

http://java.sun.com/docs/books/tutorial/
The Campione & Walrath book, essentially all the tutorials ON LINE,
with examples. Called “The JAVAtm Tutorial” page…

http://java.sun.com/j2se/
Where to look for a browser for all the Java classes, objects, methods,
etc., that you use to bolt components together to make programs;
this is the recent version(s) of “the JAVA 2 Platform”

http://www.gamelan.com
A useful directory for Java code examples, a good place to snoop for Java
code you can borrow/use.

Page 4

© R. Rutenbar 2001 Fall 18-760 Page 7

JAVA -- What Is It?JAVA -- What Is It?
A programming language developed by SUN

Originally developed as a language for “set top boxes” ie, for boxes that
let TVs behave like computers.
Redirected to be “an internet language” when this didn’t pan out
Released in 1995
Development led by James Gosling -- the CMU CS alum who wrote the
original “emacs” editor as a PhD student here

Why does anybody care…?
It’s a very pretty, elegant language
It specifically targets the “internetworked” world
It’s being marketed very aggressively
It was regarded as a challenge to the “market domination” of the
Microsoft/Intel duopoly, when it first appeared.

© R. Rutenbar 2001 Fall 18-760 Page 8

Java -- Big PictureJava -- Big Picture
SUN says this

[Java is a] simple, object-oriented, distributed, interpreted, robust, secure,
architecture neutral, portable, high-performance, multithreaded, and
dynamic language

Details
Simple: less syntax than C++ or even C; very clean.
Object-oriented: from the ground up, unlike C++ where it’s add-on.
Distributed: lots of direct support for networked environment.
Interpreted: you get a Java Virtual Machine to run your code.
Robust: since it’s simple & interpreted, some errors you can’t make.
Secure: again, since it’s interpreted. Also some design features.
Architecture neutral: since it’s interpreted, it runs just about anywhere.
Portable: since it’s interpreted, and highly standardized.
High performance: marketing bull. It’s slow.
Multithreaded: you can have different threads running & communicating.
Dynamic: it’s garbage collected; you can link in new code anytime.

Page 5

© R. Rutenbar 2001 Fall 18-760 Page 9

Java -- “Simple & Object Oriented”Java -- “Simple & Object Oriented”
It’s like C in that...

Similar syntax for control (if, while, for) and basic assignment
Similar basic built in data types (int, float, etc)
You can make complex data types and allocate them as needed

It’s like C++ in that...
You can do object oriented design
You can declare classes of objects, the classes have methods attached,
you can define an instance (allocate) a member of the class
You get all the usual encapsulation & abstraction benefits

© R. Rutenbar 2001 Fall 18-760 Page 10

Java -- Primitive Data TypesJava -- Primitive Data Types
Primitive means storage allocated just for this item

There are no pointers or reference parts to this object
Similar to C, not exactly the same

Aside: naming conventions
Primitive types all start with lower case letters
Other stuff (called “reference” types, start with capital letters)

Type Contains Size Comments
boolean true, false 1 bit explicit part of Java, not #define
char Unicode character 16 bits not 8! for international chars
byte signed integer 8 bits from -128 to +127 (no unsigned)
short short integer 16 bits from -32k to +32k
int signed integer 32 bits from -2B to +2B
long signed integer 64 bits it’s big
float IEEE std floating pt 32 bits standard 32 bit real
double IEEE std floating pt 64 bits standard 64 bit real

Page 6

© R. Rutenbar 2001 Fall 18-760 Page 11

Java -- Reference TypesJava -- Reference Types
Everything that’s not primitive is a reference type

This means objects that get declared and instantiated
It also means arrays
“Reference” here means like a pointer in ordinary C.

Foo a, b;

a = new Foo();

b = a;

a ref b ref

create space
for the refs

a ref b ref

a Foo
object

allocates a new
Foo data obj

a ref b ref

a Foo
object

‘b’ points to the same
physical mem (the
Foo object) as ‘a’

© R. Rutenbar 2001 Fall 18-760 Page 12

Java -- ArraysJava -- Arrays
Basically like C++

In general: elementType[] varName = new elementType[arraySize]
You declare the ref...then you have to allocate the guts of the array

class Gauss {

public static void main(String[] args) {

int[] ia = new int[101];

for (int i = 0; i < ia.length; i++)

ia[i] = i;
int sum = 0;

for (int i = 0; i < ia.length; i++)

sum += ia[i];

System.out.println(sum);

}
}

Page 7

© R. Rutenbar 2001 Fall 18-760 Page 13

Aside: About Object Oriented ProgrammingAside: About Object Oriented Programming
When you took a data structures class..

They told you (I hope) 2 reasons we make complex data structures
Abstraction: hides the dirty details of the implementation of the data

object you want to use. You have to do a bunch of
pointer chasing and special case code to implement a
STACK properly, but why show all this gruesome stuff
to the world?

Encapsulation: you can put all your related data objects and the
procedures that operate on them in one tidy little
bundle. The outside world sees the object and the
methods that work on the object, but not the gruesome
details, which are hidden.

In C++ and in JAVA...
Objects and methods are explicit parts of the language
But the philosophy and syntax are different

© R. Rutenbar 2001 Fall 18-760 Page 14

Java -- About ObjectsJava -- About Objects

class Foo {

A new kind of object
is called a “class”

variable define
variable define
...

method() {
}

method() {
}

}

This class is
named “Foo”

You define the vars
which actually hold
the data items for this
objects here.

You define the procedures
which actually operate on
the data items for this
object here. These are
“methods”

To actually allocate a Foo object, do...

Foo aFooThing;
aFooThing = new Foo;

Declaring aFooThing
is not same as allocating

space for it

Page 8

© R. Rutenbar 2001 Fall 18-760 Page 15

Simple & O-O: Why Java != C or C++Simple & O-O: Why Java != C or C++
There is no C pre-processor

You cannot do #define or #ifdef...#endif
Your code has to work everyplace you plan to run it w/o platform-
specific modifications (unlike how people write UNIX code)
You cannot define any macros

There are no #includes
You can import stuff from other Java files, but the mechanism is
different, more like getting stuff from a library

There are no global variables, no global procedures
Everything in Java is an object, operated on by object methods
Cannot just have naked global vars or functions floating around
Java enforces a very “pure” object-oriented programming model

© R. Rutenbar 2001 Fall 18-760 Page 16

Java versus CJava versus C

#include <file stuff>
...

#define constants
#define macros(...)
...
#ifdef SOLARIS

platform specific stuff
#endif

define global vars
define structs (typedefs)

routine_defns(..) {
}

main(char *argv[], int argc) {
...main code

}

Typical C file
import java libraries
...

class FOO {
define vars
method_defns(...) {
}

}
class BAR {

define vars
method_defns(...) {
}

}

class myStuff {
public static void main(String[]) {
...main code
}

}

Typical Java file

!=

Page 9

© R. Rutenbar 2001 Fall 18-760 Page 17

Aside: Java Applications versus AppletsAside: Java Applications versus Applets
Java application

A stand-alone program that will be run by the Java virtual machine on
whatever platform you are sitting on
You compile the code, you get an executable, you run it
You can do pretty much anything you want in an application

Java applet
A program that you intend to download from the network to your
favorite browser, which will provide the Java virtual machine to actually
run your code inside the browser window.
Applets must have a particular structure: there are certain methods
they have to implement in certain ways in order for the browser to be
able to run the code (eg, initialization code, drawing code, redraw code)
Strict security model: your browser sets how much the applet can do.
Ex: Cannot necessarily open a file to write on your host machine unless
you explicitly permit this. Cannot necessarily send out a packet on the
network from a Java applet.

© R. Rutenbar 2001 Fall 18-760 Page 18

Simple & O-O: Why Java != C or C++Simple & O-O: Why Java != C or C++
There are no pointers. None. Zip. Nada.

No *foo stuff. No &foo stuff. No x = (Foo *)malloc(sizeof Foo) stuff.
No pointer arithmetic.

for(p = &array[0]; p!=NULL; p++) -- gone.
Objects have slots whose value is another object, accessed via “dot”
notation.
class ListNode {

int listValue
ListNode nextNode;
...
public addNode(int newValue) {

// code to add a new node to list
}

}

ListNode x;
x = new ListNode;
x.nextNode = new ListNode

listValue

listValue null

x

Page 10

© R. Rutenbar 2001 Fall 18-760 Page 19

Simple & O-O: Why Java != C or C++Simple & O-O: Why Java != C or C++
Java is garbage collected

Get a new object via x = new Foo,
(like C++, not like C, with x = (Foo *)malloc(sizeof Foo))
No C-style malloc() or free() or sizeof stuff
When an object is no longer referenced by some other object, the Java
Virtual Machine collects it and returns it to the storage pool.
PRO: it’s way easier to write code this way. Lots of bugs can’t happen.
CON: it’s slower code, less predictable, more overhead in time

(when the garbage collector runs) and space (to tag the objects
with the info necessary to collect them as needed)

Strings are a real part of the language
“String” is a defined class, but compiler treats it specially
Example

String foo;
foo = “hello world”;
if (foo.length() == 0)....

This is an instance method; more about this later...

© R. Rutenbar 2001 Fall 18-760 Page 20

Simple & O-O: Why Java != C or C++Simple & O-O: Why Java != C or C++
Basically same operator set (OK, so here Java ~ C)

Same basic arithmetic ops + - * / %, bit shift ops, logical compare ops, etc

Small differences
+ works on String objects: it concatenates them.

&, | work on integers to do parallel bit-wise ops, but they also work on
booleans to do logical ops. These always evaluate all their operands on
left and right side, even if value of expression is known after only partial
processing of the expression.
A few others (see, eg, Java in a Nutshell.)

Difference: no operator overloading
+ is always “plus”, can only do it on numbers and Strings. Period.
Cannot make it work on ComplexNum, Matrices, other defined classes.
Simplifies reading the language.

Page 11

© R. Rutenbar 2001 Fall 18-760 Page 21

Simple & O-O: Why Java != C or C++Simple & O-O: Why Java != C or C++
Similar control structures.

if() ... else...; while(); do/while();
Pretty much the same EXCEPT the test MUST return a boolean
int i = 10;
while (i- -) {

Object p = getObject();
if (p) {

do something;
}

}

Switch statement is the same.
You can use byte, short, int, long, char as the case statement labels.

Illegal. In C it works since when
i == 0 loop quits. But (int)0 != boolean false
in Java language.

Illegal. In C it works since when
p==NULL (==0) loop quits.
But NULL != boolean false
in Java language.

© R. Rutenbar 2001 Fall 18-760 Page 22

Simple && O-O: Why Java != C or C++Simple && O-O: Why Java != C or C++
for() loops basically same

Can define the vars in the loop & initialize, like in C++
for(int i = 0; String s=“hello”; (i<10) && (s.length() != 0); i++) ...

No goto at all. Labeled break & continue.
Labels are the target of the implicit “goto” of the break or continue

test: if(check(i)) {
for(int j=0; j<10; j++) {

if (j > i) break;
if (a[i][j] == null) break test;

}
}
...

Remember, this MUST be a boolean

Just
break

this
loop

Breaks out
of both loops
down to here--
which is the end
of the “test” block

Page 12

© R. Rutenbar 2001 Fall 18-760 Page 23

Simple & O-O: Why Java != C or C++Simple & O-O: Why Java != C or C++
Exception handling is much more elegant

When something screws up the Java machine “throws an exception”
which is just another kind of object, with values and methods
You can “catch” that exception and decide how to handle it.

try {
// normally this code runs top to bottom, unless there is a problem

}
catch (SomeException oops1) {

//handle the exception object oops1 of type SomeException here
}
catch (AnotherException oops2) {

// handle different exception object oops2 of type AnotherException
}
finally {

// always execute this code regardless of whether we leave the try{}
// block normally, or via a handled exception, or via an unhandled
// exception, or via a break, continue or return statement

}

© R. Rutenbar 2001 Fall 18-760 Page 24

Simple & O-O: Why Java != C or C++Simple & O-O: Why Java != C or C++
So, Java can’t (isn’t supposed to) core dump

It’s interpreted, so anything that screws up is caught by the Java virtual
machine, and generates an exception object.
If you catch that exception, you can decide how to proceed.
If you don’t catch it, the Java machine just stops executing your code
and tells you where the problem happened

Consequences
Cannot have a memory leak.
If you deref a null pointer -- Java throws an exception.
If you divide a number by 0 -- Java throws an exception.
If you walk off the end of an array -- Java throws an exception. etc etc.
Pretty nice environment in which to debug code.

Page 13

© R. Rutenbar 2001 Fall 18-760 Page 25

Examples...Examples...
You can go look up the rest of the syntax...

Find your favorite Java book.
The first 100 or so pages of Java in a Nutshell are pretty good here.

Eventually, you want to go look at real code
Nice thing about Java is there is a LOT of Java code out there
Can go out on the net and get it and read it and run it
Applet code even runs in your browser.

© R. Rutenbar 2001 Fall 18-760 Page 26

Ex1: Histogram ClassEx1: Histogram Class
Task

You have numerical data and want to calculate a histogram on the data.

I want a class that implements an abstract histogram type on integers,
and I want to be able to do 2 things:

Add a new raw data element to the histogram
Print out the histogram data, including mean/median

0 1 2 3 4 5 6 7 8

bar height is what we calculate
from raw data; tells us how
many “6”s there were in the data

Page 14

© R. Rutenbar 2001 Fall 18-760 Page 27

Ex1: Histogram Code (part 1)Ex1: Histogram Code (part 1)
class Histogram {

private final int SIZE = 200;

public int[] histArray = new int[SIZE];

public Histogram() {

for(int i = 0; i<SIZE; i++)
this.histArray[i] = 0;

}

public void add(int i) {
this.histArray[i]++;

}

...

Constructor for the class;
when you say
Histogram H = new Histogram();
“new” calls this code

2 vars, one (SIZE) is hidden;
the other (the actual histogram array)
is public

Simple method to add a data pt
to one element of histogram

© R. Rutenbar 2001 Fall 18-760 Page 28

Ex1: Histogram Code (part 2)Ex1: Histogram Code (part 2)
public void print(String title) {

int tot = 0;
int count = 0;
int top = SIZE-1;
int i;

for(i=SIZE-1; i>=0; i--) {
if(this.histArray[i] != 0) {

top = i;
break;

}
}

System.out.println("\n--");
System.out.println(title);

for(i = 0; i<=top; i++) {
System.out.println(i + "\t" + this.histArray[i]);
tot += (i * this.histArray[i]);
count += this.histArray[i] ;

}

Page 15

© R. Rutenbar 2001 Fall 18-760 Page 29

Ex1: Histogram Code (part 3)Ex1: Histogram Code (part 3)

...
System.out.println(" mean = " + ((double)tot / (double)count));

int medianNum = (int) Math.round (((double) count / 2.0));

int first, last = 0;
for(i=0; i<=top; i++) {

if(this.histArray[i] ==0)
continue;

first = last + 1;
last = first + this.histArray[i] - 1;

if(first <= medianNum && last >= medianNum) {
System.out.println(" median = " + i);
break;

}
}

}
}

© R. Rutenbar 2001 Fall 18-760 Page 30

Using the Histogram CodeUsing the Histogram Code

import java.lang.Math;

class doHist {

public static void main(String args[]) {

Histogram aHist = new Histogram();

for (each piece of data int x I want to analyze)
aHist.add(x);

aHist.print(“Num Count”);
}

}

Num Count
0 0
1 20
2 19
3 10
4 11
5 19
6 11
7 8
8 7
9 4
10 3
11 1
12 2
13 0
14 1

mean = 4.48276
median = 4Example of output you

get on “stdout”

Page 16

© R. Rutenbar 2001 Fall 18-760 Page 31

Issues to AddressIssues to Address
Several things brought up by that example

Object definition
Is this “class name { }” thing all there is?

Computation
Does every real calculation” look like objectName.method(params)?

Input Output
We saw the Java version of C’s printf: System.out.println(“string foo”);
What else is there? How do I open a file and read it? Write it?
How do I do simple graphics, eg, open a window, draw a rectangle?

© R. Rutenbar 2001 Fall 18-760 Page 32

Java Objects: Class DefinitionsJava Objects: Class Definitions
There is subtlety here we should be clear on.
Example: a “circle” class (from Java in a Nutshell)

public class Circle {
static int numCircles = 0; // class variable, count num of instances
public double x, y, r; // instance variables: center and radius

public Circle(double x, double y, double r) {
this.x = x; this.y=y; this.r = r;
numCircles++;

}

public Circle(double r) { this(0.0, 0.0, r); }

public Circle biggerInst(Circle c) {
if (c.r > r) return c; else return this;

}

public static Circle biggerClass(Circle a, Circle b) {
if(a.r > b.r) return a; else return b;

}
}

Constructor
takes 3 nums

Constructor just takes
radius, sets other to 0

2 methods...

Page 17

© R. Rutenbar 2001 Fall 18-760 Page 33

Class Defn: Instance VariablesClass Defn: Instance Variables
You get a fresh copy with every new instance of object

public class Circle {
static int numCircles = 0; // class variable, count num of instances
public double x, y, r; // instance variables: center and radius

public Circle(double x, double y, double r) {
this.x = x; this.y=y; this.r = r;
numCircles++;

}
public Circle(double r) { this(0.0, 0.0, r); }

public Circle biggerInst(Circle c) {
if (c.r > r) return c; else return this;

}
public static Circle biggerClass(Circle a, Circle b) {

if(a.r > b.r) return a; else return b;
}

}

MEMORY

a
Circle
x,y,r

Circle fred, ethyl;
fred = new Circle(0.0,2.0,3.0);
ethyl = new Circle(5.0);

fred

ethyl

a
Circle
x,y,r

© R. Rutenbar 2001 Fall 18-760 Page 34

Class Defn: Class VariablesClass Defn: Class Variables
You get one copy only; belongs to the class itself

public class Circle {
static int numCircles = 0; // class variable, count num of instances
public double x, y, r; // instance variables: center and radius

public Circle(double x, double y, double r) {
this.x = x; this.y=y; this.r = r;
numCircles++;

}
public Circle(double r) { this(0.0, 0.0, r); }

public Circle biggerInst(Circle c) {
if (c.r > r) return c; else return this;

}
public static Circle biggerClass(Circle a, Circle b) {

if(a.r > b.r) return a; else return b;
}

}

MEMORY

a Circle
x,y,r

Circle fred, ethyl;
fred = new Circle(0.0,2.0,3.0);
ethyl = new Circle(5.0);

fred

ethyl

numCircles

a
Circle
x,y,r

Page 18

© R. Rutenbar 2001 Fall 18-760 Page 35

Class Defn: Instance MethodClass Defn: Instance Method
Routine that works on a particular instance of a Circle

public class Circle {
static int numCircles = 0; // class variable, count num of instances
public double x, y, r; // instance variables: center and radius

public Circle(double x, double y, double r) {
this.x = x; this.y=y; this.r = r;
numCircles++;

}
public Circle(double r) { this(0.0, 0.0, r); }

public Circle biggerInst(Circle c) {
if (c.r > r) return c; else return this;

}
public static Circle biggerClass(Circle a, Circle b) {

if(a.r > b.r) return a; else return b;
}

}

MEMORY

Circle ricky = ethyl.biggerInst(fred);

fred

ethyl

numCircles

ricky

a
Circle
x,y,r

a
Circle
x,y,r

a particular
instance of a Circle

instance
method

a parameter
that is a Circle

assumes
ethyl is bigger

© R. Rutenbar 2001 Fall 18-760 Page 36

Class Defn: Class MethodClass Defn: Class Method
Routine that belongs to class Circle, not a specific inst.
public class Circle {

static int numCircles = 0; // class variable, count num of instances
public double x, y, r; // instance variables: center and radius

public Circle(double x, double y, double r) {
this.x = x; this.y=y; this.r = r;
numCircles++;

}
public Circle(double r) { this(0.0, 0.0, r); }

public Circle biggerInst(Circle c) {
if (c.r > r) return c; else return this;

}
public static Circle biggerClass(Circle a, Circle b) {

if(a.r > b.r) return a; else return b;
}

}

MEMORY

Circle lucy = biggerClass(fred, ethyl);

fred

ethyl

numCircles

lucy

a
Circle
x,y,r

a
Circle
x,y,r

Class
method

2 parameters
that are Circles

again assumes
ethyl is bigger

Page 19

© R. Rutenbar 2001 Fall 18-760 Page 37

Why This MattersWhy This Matters
It explains a whole lot of arcane Java syntax

Example: how do you print to stdout?
System.out.println(“ a string” + var + “another string”);

Example: how do you do a square root?
double y = Math.sqrt(x);

Class

Instance Instance Method

Class Instance Method

© R. Rutenbar 2001 Fall 18-760 Page 38

Why This MattersWhy This Matters
How do you compare 2 strings?

Not like this
String s = “hello”;
if (s == “hello”) ...

Like this
String s = “hello”;
if (s.equals(“hello”))

Page 20

© R. Rutenbar 2001 Fall 18-760 Page 39

Class Defn: Class ConstructorsClass Defn: Class Constructors
Routine(s) with same name as class, called by “new”

public class Circle {
static int numCircles = 0; // class variable, count num of instances
public double x, y, r; // instance variables: center and radius

public Circle(double x, double y, double r) {
this.x = x; this.y=y; this.r = r;
numCircles++;

}
public Circle(double r) { this(0.0, 0.0, r); }

public Circle biggerInst(Circle c) {
if (c.r > r) return c; else return this;

}
public static Circle biggerClass(Circle a, Circle b) {

if(a.r > b.r) return a; else return b;
}

}
Circle fred, ethyl;
fred = new Circle(0.0,2.0,3.0);
ethyl = new Circle(5.0);

© R. Rutenbar 2001 Fall 18-760 Page 40

Class Defn: Class ConstructorsClass Defn: Class Constructors
Can have different versions that take different args (like C++)

public class Circle {
static int numCircles = 0; // class variable, count num of instances
public double x, y, r; // instance variables: center and radius

public Circle(double x, double y, double r) {
this.x = x; this.y=y; this.r = r;
numCircles++;

}
public Circle(double r) { this(0.0, 0.0, r); }

public Circle biggerInst(Circle c) {
if (c.r > r) return c; else return this;

}
public static Circle biggerClass(Circle a, Circle b) {

if(a.r > b.r) return a; else return b;
}

}
Circle fred, ethyl;
fred = new Circle(0.0,2.0,3.0);
ethyl = new Circle(5.0);

Page 21

© R. Rutenbar 2001 Fall 18-760 Page 41

Class Defn: Class DestructorClass Defn: Class Destructor
In Java it’s called a “finalizer”

It’s an instance method (non-static), takes no args, returns void, must
be called finalize()

What finalize() does NOT do
It doesn’t delete your object memory.
Java is garbage collected so when something has no users referencing it,
it gets automatically deleted
Unlike C++, where you’d need a ~Circle() method to kill the object

What finalize() does do
It releases resources that the garbage collector cannot see
Examples: file descriptors, network sockets, etc.
Stuff you want to “close” before you quit
Java calls the finalizer() before it garbage collects the object

© R. Rutenbar 2001 Fall 18-760 Page 42

Class Defns: InheritanceClass Defns: Inheritance
class Circle {
...
}

class GraphicsCircle {
...
}

inherits....

Want a new kind of circle that
has all the old properties, but

also has new methods to
draw a circle on the screen.

Don’t have to make a whole new
class, you inherit the old stuff

public class GraphicCircle extends Circle {
// automatically inherit old Circle
// methods and vars
// we omit a constructor for clarity

Color outline, fill;
public void draw(DrawWindow dw) {

dw.drawCircle(x, y, r, outline, fill);
}

}

//use it -- examples
GraphicCircle c = new GraphicCircle;
GraphicCircle d = new GraphicCircle;
c.draw(aWindow);
Circle e = biggerClass(c, d);

Page 22

© R. Rutenbar 2001 Fall 18-760 Page 43

Class Defns: Multiple InheritanceClass Defns: Multiple Inheritance
Can I inherit from > 1 super-class? Basically, no....

class Circle {
...
}

class GraphicsCircle {
...
}

inherits....

class DrawStuff {
...
}

In C++ you can inherit the actual
implementation of different methods
from more than one parent class.

In Java, you can inherit actual
method implementations from
just 1 parent class.

So -- is there something like multiple
inheritance in Java? yes...

© R. Rutenbar 2001 Fall 18-760 Page 44

Class Defns: InterfacesClass Defns: Interfaces
An interface is just a class def that defines the names and
params of its methods, but no “code guts” for them.

class Circle {
...
}

class GraphicsCircle {
...
}

inherits....

class DrawStuff {
...
}

public interface DrawStuff {
public void aMethod(.....);
public void bMethod(.....);

}

public class GraphicCircle
extends Circle implements DrawStuff {

// you must add real code for all the
// public methods in Draw Stuff

public void aMethod(...) {
code; code; code;

}
public void bMethod(...) {

code; code; code;
}

}

Page 23

© R. Rutenbar 2001 Fall 18-760 Page 45

Aside: So, Now You Know How to do an AppletAside: So, Now You Know How to do an Applet
import java.awt.Graphics;
import java.util.Date;

public class Clock extends java.applet.Applet implements Runnable {

Thread clockThread = null;

public void start() {
if (clockThread == null) {

clockThread = new Thread(this, "Clock");
clockThread.start();

}
}
public void run() {

// loop terminates when clockThread is set to null in stop()
while (Thread.currentThread() == clockThread) {

repaint();
try {

Thread.sleep(1000);
} catch (InterruptedException e){
}

}
}
public void paint(Graphics g) {

Date now = new Date();
g.drawString(now.getHours() + ":" + now.getMinutes() + ":" + now.getSeconds(), 5, 10);

}
public void stop() {

clockThread = null;
}

}

We must implement
these methods
(which are from the
Runnable interface)
so a browser knows
what to call to
“run” our applet

© R. Rutenbar 2001 Fall 18-760 Page 46

Clock Applet, RunningClock Applet, Running

This applet
just updates

a little
clock “text”

every sec
in your

browser
window.

Pretty
cool, huh?

Page 24

© R. Rutenbar 2001 Fall 18-760 Page 47

Java I/OJava I/O
Pretty rich set of features

Support for C-like command line input
Support for networks
Support for graphics, and interacting with a browser
Support for file (byte stream) IO from your local host file system

We will look at just 3 of these, a little bit
Doing command line input
Doing file stream IO
Very simple paint-a-rectangle-on-a-window sort of graphics

© R. Rutenbar 2001 Fall 18-760 Page 48

Command Line I/OCommand Line I/O
A lot like ordinary C, but with nicer string vars

Also platform dependent. You may actually type on a command line to
run the code + its arguments, or Java may pop up a window and ask.

public static void main (String args[]) {
String Infile = new String("example.in");
String Outfile = new String("example.out");
if (args.length == 1) {

Infile = args[0];
}
if (args.length == 2) {

Infile = args[0];
Outfile = args[1];

}
if (args.length > 2) {

System.err.println("I don't know how to handle that many command " +
"line arguments.");

System.err.println("Please try again.\n");
System.exit(-1);

}
}

Page 25

© R. Rutenbar 2001 Fall 18-760 Page 49

File I/O: Opening and Closing the FIileFile I/O: Opening and Closing the FIile
Java has rich support for various kinds of data streams

try {
DataInputStream Inpfile =

new DataInputStream(new FileInputStream(Infile));
String LineIn = Inpfile.readLine();
if (LineIn == null) {

System.err.println("There is no data on the first line of the " +
"input file.");

System.err.println("Not cool, get a real data file.");
System.exit(-1);

}
... // stuff to read the file...

Inpfile.close();
} catch (IOException e) {

System.err.println("\nWe are having trouble opening and reading " +
"the file: " + Infile);

System.err.println("We get the error: " + e + "\n");
System.exit(-1);

}

© R. Rutenbar 2001 Fall 18-760 Page 50

File I/O: Actually Reading the FIleFile I/O: Actually Reading the FIle
How do I do fscanf(fileID, “%d %d”, &X, &Y)...?

Several ways involving a tokenizer
You tokenize a file stream by recognizing that the chars really form tokens
that represent readable stuff like ints and floats and Strings, which are
separated by “white space” like spaces and tabs.
A tokenizer skips over the white space and hands you the next token.
If you know what to expect, you can just parse for the right int, float, etc
(If not (more general case) you can ask Java what the next token was.)

String LineIn = Inpfile.readLine();
...
StringTokenizer DataIn = new StringTokenizer(LineIn, " ");
X = Integer.parseInt(DataIn.nextToken());
Y = Integer.parseInt(DataIn.nextToken());
Width = Integer.parseInt(DataIn.nextToken());
Height = Integer.parseInt(DataIn.nextToken());
LineIn = Inpfile.readLine();
DataIn = new StringTokenizer(LineIn, " ");
R = Integer.parseInt(DataIn.nextToken());
G = Integer.parseInt(DataIn.nextToken());
B = Integer.parseInt(DataIn.nextToken());

String to read

White-space defn

Page 26

© R. Rutenbar 2001 Fall 18-760 Page 51

File I/O: Subtle StuffFile I/O: Subtle Stuff
String LineIn = Inpfile.readLine();

Reads one return-delimited line from Inpfile and sticks it in a String

StringTokenizer DataIn = new StringTokenizer(LineIn, " ");
Looks at the String LineIn, and tells the tokenizer that whitespace = “ “
Makes a new “tokenized” object that we can yank tokens (inputs) out
of, one by one, in order

X = Integer.parseInt(DataIn.nextToken());
We expect this to be a fscanf(file, “%d”, &x) sort of thing...
X is just an int, ie, int X;
But “int” is not an object, it’s a primitive type
All primitive types have an associated class object def--in this case
Integer-- where useful class methods live.
The useful method we want is “parseInt” which yanks the next int out
of this tokenized data stream, and returns a primitive int

© R. Rutenbar 2001 Fall 18-760 Page 52

File I/O: Printing to a FIleFile I/O: Printing to a FIle
Very similar stream-based idea

Remember how ordinary stdout was: System.out.println(“stuff”)...?

try {
FileOutputStream ostream = new FileOutputStream(Outfile);
PrintStream Ourprint = new PrintStream(ostream);
Ourprint.println("Here is the results of our 760 Java example " +

"program.");
Ourprint.println("The data on the rectangle we drew is:\n\t" +

ADrawnRect + "\n");
Ourprint.close();

} catch (IOException e) {
System.err.println("\nWe are having trouble writing to the file: " +

Outfile);
System.err.println("We get the error: " + e + "\n");
System.exit(-1);

}

Page 27

© R. Rutenbar 2001 Fall 18-760 Page 53

Java I/O: Simple DrawingJava I/O: Simple Drawing
Pretty rich set of drawing classes called “awt”

Java “abstract windowing toolkit”; get it via: import java.awt.*;

3 kinds of objects in the awt
Graphics: classes that define colors, fonts, images, etc
Components: classes are graphical user interface (GUI) components like
buttons, menus, lists, dialog boxes
Layout managers: classes that control the layout of other graphics
components within their Java “containers”

Java hierarchy for us

Component

Container

Window

Frame

... a GUI object

...it holds other GUI objects

...it’s a window on a screen

...it’s a top-level resizable window with
a menu bar, cursor, icon

© R. Rutenbar 2001 Fall 18-760 Page 54

Example: Drawing a Rectangle in a FrameExample: Drawing a Rectangle in a Frame
From our small example again

class my_rect extends Frame {
private int x,y;
private int height, width;
private int area;
private Color color;
private String Title;

//constructor
public my_rect(int Xin, int Yin, int Widthin, int Heightin, Color Colorin,

String Titlein) {
x = Xin;
y = Yin;
width = Widthin;
height = Heightin;
color = Colorin;
Title = Titlein;
area = width * height;
this.setTitle(Title);
this.resize(400,400);
this.show();

}

Component

Container

Window

Frame

lines show where we inherit these methods

Page 28

© R. Rutenbar 2001 Fall 18-760 Page 55

Example: Drawing a Rectangle in a FrameExample: Drawing a Rectangle in a Frame

...

/* This paint procedure is called by the system, to update the window.
All drawing objects need to live here. */

public void paint(Graphics g) {
g.setColor(color);
g.fillRect(x,y,width,height);
g.setColor(Color.black);
g.drawString("Close the window to end the program",10,390);

}

Component

Container

Window

Frame

paint() method defined here, but
we have to write the body code for it

The Graphics class defines the platform-dependent
drawing primitive. A “graphics” object gets
allocated by Java (by Container) and passed

to the paint() method. Then you call graphics
instance methods to really draw stuff

© R. Rutenbar 2001 Fall 18-760 Page 56

What Does This Code Actually Do...?What Does This Code Actually Do...?
To run it:

Put code in
“example.java” and
data in “example.in”
To compile, type:
javac example.java
Generates “.class” files
holding Java byte codes
for all your classes
To run it, type:
java example
It does this when run
on IBM AIX UNIX...

Page 29

© R. Rutenbar 2001 Fall 18-760 Page 57

Aside: AWT versus Swing in JAVAAside: AWT versus Swing in JAVA
Newer graphics components called “Swing”

Quoting from http://pandonia.canberra.edu.au/java/swingtut/tut2.html:

Evolution of Java GUI programming
The AWT (Abstract Window Toolkit) has been present in all versions of
Java
The AWT objects are built above native code objects, giving a native
look-and-feel
The AWT objects are a least common denominator of all platforms
The Swing objects are a separate library for [old, early] JDK 1.1
The Swing objects are in pure Java, and have the same look-and-feel on
all platforms
The L&F [look & feel] of Swing objects can be customised to particular
styles
In JDK 1.2, the Swing objects are part of the Java Foundation Classes
The JFC objects will provide a superset of each platform's objects
The AWT objects will decrease in importance over time

© R. Rutenbar 2001 Fall 18-760 Page 58

Java SummaryJava Summary
Interesting, elegantly designed O-O language

C-like syntax, but O-O stuff much tidier than in C++
Rich collection of libraries and reusable objects
Fairly portable (all the UNIXs, Windows, Mac, etc)
Interpreted & garbage collected & strongly typed: pretty robust

Do people really do CAD in this?
Well—not much. People are doing GUIs and some configurable IP.
People are doing network downloadable applets now.
But “real” applications? -- Java is still too slow and too much memory
Compiler guys are working on real (not interpreted, fast) versions

Why for 760?
It’s very portable. Has nice library of useful data structures, methods.
As a nice, friendly prototyping language, it’s hard to beat.

Page 30

© R. Rutenbar 2001 Fall 18-760 Page 59

…But, There is Some JAVA CAD Out There……But, There is Some JAVA CAD Out There…

August 31 2001
EETimes online
See:
http://www.eetimes.com/story/
OEG20010831S0086

