m

(Lec 02) Programming Aside: Java'

X 'What you know
» C/C++ programming
» Probably some object-oriented design issues
» Maybe already some Java (if so, this is review...)

X 'What you don’t know

» Java
» Latest, greatest entrant in the language-wars
» Subject of significant interest, investment, and hype

» What we want to do here
» Talk about the features in the language
» Get you some basic familiarity
» Show some examples %
» Do 760 Project | in Java %

—

JAVA

© R. Rutenbar 2001 Fall 18-760 Page 1

Copyright Notice

© Rob A. Rutenbar, 2001
All rights reserved.

You may not make copies of this
material in any form without my
express permission.

© R. Rutenbar 2001 Fall 18-760 Page 2

Page 1

N Physical

» Lecture 02 -- Java review

N Electronic
» Nothing today

© R. Rutenbar 2001 Fall 18-760 Page 3

Where Are We?

N Doing some JAVA background you need for Project 1...

M T W Th F

Aug7 28 29 30 [31]I Introduction
Sep[3 [4 [5 W7 |2 Advanced Boolean algebra
(o Jin 12 13 Ti4 |3 JAVA Review

07 _T18 _T19 20 21 |4
R4 25 26 27 [28 |5
Octll [2 [3 [4 [5]Jé
(8 [9 o it iz |7

Formal verification

2-Level logic synthesis

Multi-level logic synthesis

5 [i6 (17 18 [EHMs ooy MPPInE

PPEl23 4 5 26 |9 :

29 Bo B 12 Jio SoU"8 .
Nov[s [6 [7 18 [9 111 Statlc'tlmlr:lgfinalysw .

12 13 [14 [15 [16 |12 Electrical timing analysis

Thnxgive[19 20 INIFYIIFEN 13 Geometric data structs & apps
26 [27 28 [29 [30 |14
Dec[3 [4 [5 [6 [7]1I5
o TiT Ti12 T13 T14 16

© R. Rutenbar 2001 Fall 18-760 Page 4

Page 2

Java -- Good References

N Two book suggestions

» David Flanagan, JAVA in a Nutshell: A Desktop Reference Guide, O’Reilly,
2nd Edition, May 1997.

A good nuts and bolts reference with a lot of emphasis on how Java
differs from C and from C++.

» Mary Campione and Kathy Walrath, The Java Tutorial: Object-Oriented
Programming for the Internet, (The JAVA Series), Addison Wesley, 1996.

Another good treatment from some Java folks at SUN, with good intro
stuff and lots of focus on network and internet-centric stuff.

© R. Rutenbar 2001 Fall 18-760 Page 5

Java -- Good References

N Web references on line

» http://www.javasoft.com
The SUN main site for Java. You can see product info, download free
Java code, etc.

» http://java.sun.com/docs/books/tutorial/
The Campione & Walrath book, essentially all the tutorials ON LINE,
with examples. Called “The JAVA'™ Tutorial” page...

» http://java.sun.com/j2se/
Where to look for a browser for all the Java classes, objects, methods,
etc., that you use to bolt components together to make programs;
this is the recent version(s) of “the JAVA 2 Platform”

» http://www.gamelan.com
A useful directory for Java code examples, a good place to snoop for Java
code you can borrow/use.

© R. Rutenbar 2001 Fall 18-760 Page 6

Page 3

JAVA -- What Is It?

A programming language developed by SUN

» Originally developed as a language for “set top boxes” ie, for boxes that
let TVs behave like computers.

» Redirected to be ‘“an internet language” when this didn’t pan out
» Released in 1995

» Development led by James Gosling -- the CMU CS alum who wrote the
original “emacs” editor as a PhD student here

X Why does anybody care...?
» It’s a very pretty, elegant language
» It specifically targets the “internetworked” world
» It’s being marketed very aggressively

» It was regarded as a challenge to the “market domination” of the
Microsoft/Intel duopoly, when it first appeared.

© R. Rutenbar 2001 Fall 18-760 Page 7

Java -- Big Picture

N SUN says this

[Javais a] simple, object-oriented, distributed, interpreted, robust, secure,
architecture neutral, portable, high-performance, multithreaded, and
dynamic language

N Details
» Simple: less syntax than C++ or even C; very clean.
» Object-oriented: from the ground up, unlike C++ where it’s add-on.
» Distributed: lots of direct support for networked environment.
» Interpreted: you get a Java Virtual Machine to run your code.
» Robust: since it’s simple & interpreted, some errors you can’t make.
» Secure: again, since it’s interpreted. Also some design features.
» Architecture neutral: since it’s interpreted, it runs just about anywhere.
» Portable: since it’s interpreted, and highly standardized.
» High performance: marketing bull. It’s slow.
» Multithreaded: you can have different threads running & communicating.
» Dynamic: it’s garbage collected; you can link in new code anytime.

© R. Rutenbar 2001 Fall 18-760 Page 8

Page 4

Java -- “Simple & Object Oriented”

N It’s like C in that...
» Similar syntax for control (if, while, for) and basic assignment
» Similar basic built in data types (int, float, etc)
» You can make complex data types and allocate them as needed

X It’s like C++ in that...

» You can do object oriented design

» You can declare classes of objects, the classes have methods attached,
you can define an instance (allocate) a member of the class

> You get all the usual encapsulation & abstraction benefits

© R. Rutenbar 2001 Fall 18-760 Page 9

Java -- Primitive Data Types

N Primitive means storage allocated just for this item
» There are no pointers or reference parts to this object
» Similar to C, not exactly the same

Type Contains Size Comments

boolean true, false I bit explicit part of Java, not #define
char Unicode character 16 bits not 8! for international chars
byte signed integer 8 bits from -128 to +127 (no unsigned)
short short integer 16 bits from -32k to +32k

int signed integer 32 bits from -2B to +2B

long signed integer 64 bits it’s big

float IEEE std floating pt 32 bits standard 32 bit real

double IEEE std floating pt 64 bits standard 64 bit real

N Aside: naming conventions
» Primitive types all start with lower case letters
» Other stuff (called “reference” types, start with capital letters)

© R. Rutenbar 2001 Fall 18-760 Page 10

Page 5

Java -- Reference Types

N Everything that’s not primitive is a reference type
» This means objects that get declared and instantiated
» It also means arrays
> ‘“Reference” here means like a pointer in ordinary C.

create space
for the refs N [aref | [bref |

Foo a, b; allocates a new |

Foo data obj
a = new Foo();—*/

- a Foo
» ObieCt
‘b’ points to the same | [bref |

physical mem (the
Foo object) as ‘a’

aref | | bref |

aref |

Fall 18-760 Page 11

N Basically like C++

» In general: elementType[] varName = new elementType[arraySize]
» You declare the ref...then you have to allocate the guts of the array

class Gauss {
public static void main(String[] args) {
int[] ia = new int[1017];
for (inti = 0; i < ia.length; i++)
ia[i] =i;
int sum = 0;
for (inti = 0; i < ia.length; i++)
sum += ia[i];
System.out.printin(sum);

}

© R. Rutenbar 2001 Fall 18-760 Page 12

Page 6

Aside: About Object Oriented Programming

X 'When you took a data structures class..
» They told you (I hope) 2 reasons we make complex data structures

» Abstraction: hides the dirty details of the implementation of the data
object you want to use. You have to do a bunch of
pointer chasing and special case code to implement a
STACK properly, but why show all this gruesome stuff
to the world?

» Encapsulation: you can put all your related data objects and the
procedures that operate on them in one tidy little
bundle. The outside world sees the object and the
methods that work on the object, but not the gruesome
details, which are hidden.

In C++ and in JAVA...

» Objects and methods are explicit parts of the language
» But the philosophy and syntax are different

© R. Rutenbar 2001 Fall 18-760 Page 13

Java -- About Objects

A new kind of object This class is
is called a “class” named “Foo”’

Ny

¥
class Foo {

L~ You define the vars
which actually hold
the data items for this

objects here.

variable define
variable define

method() {
<+——You define the procedures
which actually operate on
method() { the data items for this
object here. These are
“methods”

To actually allocate a Foo object, do...

Foo aFooThing;

Declaring aFooThing " aFooThing = new Foo;

is not same as allocating
space for it ©R. Rutenbar 2001 Fall 18-760 Page 14

Page 7

Simple & 0-O: Why Java !=C or C++

N There is no C pre-processor
» You cannot do #define or #ifdef... #endif

» Your code has to work everyplace you plan to run it w/o platform-
specific modifications (unlike how people write UNIX code)

» You cannot define any macros

N There are no #includes

» You can import stuff from other Java files, but the mechanism is
different, more like getting stuff from a library

N There are no global variables, no global procedures

» Everything in Java is an object, operated on by object methods
» Cannot just have naked global vars or functions floating around
» Java enforces a very “pure” object-oriented programming model

© R. Rutenbar 2001 Fall 18-760 Page 15

Java versus C

Typical C file Typical Java file
#include <file stuff>

import java libraries

#define constants class FOO {
#define macros(...) define vars
method_defns(...) {
#ifdef SOLARIS }
platform specific stuff }
#endif class BAR {
define vars
define global vars method_defns(...) {
define structs (typedefs) }
}
routine_defns(..) {
} class myStuff {
public static void main(String[]) {
main(char *argv[], int argc) { ...main code
...main code }
} }
©R. Rutenbar 2001 Fall 18-760 Page 16

Page 8

Aside: Java Applications versus Applets

X Java application

» A stand-alone program that will be run by the Java virtual machine on
whatever platform you are sitting on
» You compile the code, you get an executable, you run it

» You can do pretty much anything you want in an application

Java applet

» A program that you intend to download from the network to your
favorite browser, which will provide the Java virtual machine to actually
run your code inside the browser window.

» Applets must have a particular structure: there are certain methods

they have to implement in certain ways in order for the browser to be
able to run the code (eg, initialization code, drawing code, redraw code)

» Strict security model: your browser sets how much the applet can do.
Ex: Cannot necessarily open a file to write on your host machine unless
you explicitly permit this. Cannot necessarily send out a packet on the
network from a Java applet.

© R. Rutenbar 2001 Fall 18-760 Page 17

Simple & 0-0: Why Java !=C or C++

N There are no pointers. None. Zip. Nada.
» No *foo stuff. No &foo stuff. No x = (Foo *)malloc(sizeof Foo) stuff.
» No pointer arithmetic.
» for(p = &array[0]; p!=NULL; p++) -- gone.
» Objects have slots whose value is another object, accessed via “dot”
notation.
class ListNode {
int listValue
ListNode nextNode;

public addNode(int newValue) {
Il code to add a new node to list

}
}
. X |listValue
ListNode x; | @ |
X = new ListNode;
x.nextNode = new ListNode listValue | null]
©R. Rutenbar 2001 Fall 18-760 Page 18

Page 9

Simple & 0-O: Why Java !=C or C++

N Java is garbage collected

» Get a new object via x = new Foo,
(like C++, not like C, with x = (Foo *)malloc(sizeof Foo))

» No C-style malloc() or free() or sizeof stuff

» When an object is no longer referenced by some other object, the Java
Virtual Machine collects it and returns it to the storage pool.

» PRO: it’s way easier to write code this way. Lots of bugs can’t happen.
» CON: it’s slower code, less predictable, more overhead in time
(when the garbage collector runs) and space (to tag the objects
with the info necessary to collect them as needed)
N Strings are a real part of the language
> “String” is a defined class, but compiler treats it specially
» Example
String foo;
foo = “hello world’’;
if (foo.length() == 0)....

This is an instance method; more about this later...
© R. Rutenbar 2001 Fall 18-760 Page 19

Simple & 0-0: Why Java !=C or C++

N Basically same operator set (OK, so here Java ~ C)

» Same basic arithmetic ops + - * | %, bit shift ops, logical compare ops, etc

N Small differences
» + works on String objects: it concatenates them.

» &, | work on integers to do parallel bit-wise ops, but they also work on
booleans to do logical ops. These always evaluate all their operands on
left and right side, even if value of expression is known after only partial
processing of the expression.

» A few others (see, eg, Java in a Nutshell.)

N Difference: no operator overloading
» + is always “plus”, can only do it on numbers and Strings. Period.
» Cannot make it work on ComplexNum, Matrices, other defined classes.
» Simplifies reading the language.

© R. Rutenbar 2001 Fall 18-760 Page 20

Page 10

Simple & 0-O: Why Java !=C or C++

N Similar control structures.

if() ... else...; while(); do/while();
Pretty much the same EXCEPT the test MUST return a boolean

inti=10; Illegal. In C it works since when
while{ i == 0 loop quits. But (int)0 != boolean false
Object p = getObject(); in Java language.

if

do something; lllegal. In C it works since when
} p==NULL (==0) loop quits.
} But NULL != boolean false
in Java language.

N Switch statement is the same.
» You can use byte, short, int, long, char as the case statement labels.

© R. Rutenbar 2001 Fall 18-760 Page 21

Simple && O-0: Why Java !=C or C++

for() loops basically same
» Can define the vars in the loop & initialize, like in C++
for(int i = 0; String s=“hello”;|(i<10) && (s.length() != 0)4 i++) ...

Remember, this MUST be a boolean 7

N No goto at all. Labeled break & continue.
» Labels are the target of the implicit “goto’ of the break or continue

test: if(check(i)) {
for(int j=0; j<10; j++) { Breaks out
if (j>i) break; of both loops

. e down to here--
if (afi == null) break test;
(afi]il) which is the end

of the “test” block

© R. Rutenbar 2001 Fall 18-760 Page 22

Page 11

Simple & 0-O: Why Java !=C or C++

N Exception handling is much more elegant

» When something screws up the Java machine “throws an exception
which is just another kind of object, with values and methods

» You can “catch” that exception and decide how to handle it.

try {
/I normally this code runs top to bottom, unless there is a problem
}

catch (SomeException oopsl) {
/Ihandle the exception object oops| of type SomeException here
}

catch (AnotherException oops2) {
/I handle different exception object oops2 of type AnotherException

}
finally {

Il always execute this code regardless of whether we leave the try{}
Il block normally, or via a handled exception, or via an unhandled
Il exception, or via a break, continue or return statement

}

© R. Rutenbar 2001 Fall 18-760 Page 23

Simple & 0-0: Why Java != C or C++

N So, Java can’t (isn’t supposed to) core dump

» It’s interpreted, so anything that screws up is caught by the Java virtual
machine, and generates an exception object.

» If you catch that exception, you can decide how to proceed.

» If you don’t catch it, the Java machine just stops executing your code
and tells you where the problem happened

N Consequences
» Cannot have a memory leak.
» If you deref a null pointer -- Java throws an exception.
» If you divide a number by 0 -- Java throws an exception.
» If you walk off the end of an array -- Java throws an exception. etc etc.
» Pretty nice environment in which to debug code.

© R. Rutenbar 2001 Fall 18-760 Page 24

Page 12

XYou can go look up the rest of the syntax...
» Find your favorite Java book.
» The first 100 or so pages of Java in a Nutshell are pretty good here.

N Eventually, you want to go look at real code
» Nice thing about Java is there is a LOT of Java code out there
» Can go out on the net and get it and read it and run it
» Applet code even runs in your browser.

© R. Rutenbar 2001 Fall 18-760 Page 25

Ex1: Histogram Class

N Task

» You have numerical data and want to calculate a histogram on the data.

bar height is what we calculate
from raw data; tells us how
I I many “6”’s there were in the data
|
0123 6

45678..

» | want a class that implements an abstract histogram type on integers,
and | want to be able to do 2 things:

» Add a new raw data element to the histogram
» Print out the histogram data, including mean/median

© R. Rutenbar 2001 Fall 18-760 Page 26

Page 13

Ex1: Histogram Code (part1)

class Histogram {

private final int SIZE = 200; 2 vars, one (SIZE) is hidden;
the other (the actual histogram array)
public int[] histArray = new int[SIZE]; . is public

public Histogram() { Constructor for the class;

for(inti=0; i<SIZE; j++) | \hen you say
inti=0;i ji . _ . .
this. histArray(i] = 0; Histogram H = new Histogram();

} “new”’ calls this code

public void add(inti) { .
this.histArray[i]++: Simple method to add a data pt

} to one element of histogram

© R. Rutenbar 2001 Fall 18-760 Page 27

Ex1: Histogram Code (part 2)

public void print(String title) {
int tot = 0;
int count = 0;
int top = SIZE-1;
int i;

for(i=SIZE-1; i>=0; i--) {
if(this.histArray[i] '=0) {

top =i;
break;
}
}
System.out.printin("\n ");

System.out.printin(title);

for(i =0; i<=top; i++) {
System.out.printin(i + "\t" + this.histArray[i]);
tot += (i * this.histArray[i]);
count += this.histArray[i] ;

© R. Rutenbar 2001 Fall 18-760 Page 28

Page 14

Ex1: Histogram Code (part 3)

System.out.printin(" mean =" + ((double)tot / (double)count));
int medianNum = (int) Math.round (((double) count/2.0));

int first, last = 0;
for(i=0; i<=top; i++) {
if(this.histArray[i] ==0)
continue;

first =last + 1;
last = first + this.histArray[i] - 1;

if(first <= medianNum && last >= medianNum) {

System.out.printin(" median="+1i);
break;

© R. Rutenbar 2001 Fall 18-760 Page 29

Using the Histogram Code

import java.lang.Math;

class doHist { Num Count
0 0
public static void main(String argsl[]) { I 20
2 19
Histogram aHist = new Histogram(); 3 10
4]
for (each piece of data intx [|want to analyze) 5 19
aHist.add(x); 6 11
7 8
aHist.print(“Num Count”); 8 7
9 4
10 3
} I I
12 2
13 0
14 1
mean = 4.48276
Example of output you median = 4
, — 24
get on “stdout”
© R. Rutenbar 2001 Fall 18-760 Page 30

Page 15

Issues to Address

N Several things brought up by that example

N Object definition

» Is this “class name { }” thing all there is?

N Computation

» Does every real calculation” look like objectName.method(params)?

Input Output

» We saw the Java version of C’s printf: System.out.println(‘“string foo”’);
» What else is there? How do | open a file and read it? Write it?

» How do I do simple graphics, eg, open a window, draw a rectangle?

© R. Rutenbar 2001 Fall 18-760 Page 31

Java Objects: Class Definitions

N There is subtlety here we should be clear on.

N Example: a “circle” class (from Java in a Nutshell)

public class Circle {
static int numCircles = 0; // class variable, count num of instances

public double x, y, r; /] instance variables: center and radius
public Circle(double x, double y, double r) {
this.x = x; this.y=y; this.r =r; Constructor
numCircles++; takes 3 nums

Constructor just takes

public Circle(double r) { this(0.0, 0.0, r); } radius, sets other to 0

public Circle biggerInst(Circle c) {
if (c.r > r) return c; else return this;
2 methods...

public static Circle biggerClass(Circle a, Circle b) {
if(a.r > b.r) return a; else return b;

© R. Rutenbar 2001 Fall 18-760 Page 32

Page 16

Class Defn: Instance Variables

XYou get a fresh copy with every new instance of object
public class Circle {
static int numCircles = 0; // class variable, count num of instances
public double x, y, r; // instance variables: center and radius

public Circle(double x, double y, double r) {

this.x = x; this.y=y; this.r =r;
numCircles++; MEMORY

}
public Circle(double r) { this(0.0, 0.0, r); }

public Circle biggerInst(Circle c) { m
if (c.r > r) return c; else return this;

public static Circle biggerClass(Circle a, Circle b) { kil
if(a.r > b.r) return a; else return b;

}

Circle fred, ethyl;
fred = new Circle(0.0,2.0,3.0);

ethyl = new Circle(5.0); ©R. Rutenbar 2001 Fall 18-760 Page 33

Class Defn: Class Variables

You get one copy only; belongs to the class itself

public class Circle {
static int numCircles = 0; // class variable, count num of instances
public double x, y, r; /I instance variables: center and radius \

public Circle(double x, double y, double r) {]

this.x = x; this.y=y; this.r =r; /
numCircles++; MEMORY
public Circle biggerlnst(Circle c) {

if (c.r > r) return c; else return this;
)
public static Circle biggerClass(Circle a, Circle b) {
if(a.r > b.r) return a; else return b;

public Circle(double r) { this(0.0, 0.0, r); }

1
J(:ilf'cle fred, ethyl;
fred = new Circle(0.0,2.0,3.0);

ethyl = new Circle(5.0); ©R. Rutenbar 2001 Fall 18-760 Page 34

Page 17

Class Defn: Instance Method

N Routine that works on a particular instance of a Circle
public class Circle {
static int numCircles = 0; // class variable, count num of instances
public double x, y, r; // instance variables: center and radius

public Circle(double x, double y, double r) {
this.x = x; this.y=y; this.r =r;

numCircles++; MEMORY
} |_numCircles |
public Circle(double r) { this(0.0, 0.0, r); }
L . . fred -
public Circle biggerlnst(Circle c) { Circle
if (c.r > r) return c; else return this;)
} gethyl
public static Circle biggerClass(Circle a, Circle b) {
if(a.r > b.r) return a; else return b;
}
} : assumes
Circle ricky = ethxl.bisgerlnst(fred); ethyl is bigger
LY, x_a parameter
a particular instance that is a Circle
stance of a Circle method ©R. Rutenbar 2001 Fall 18-760 Page 35

Class Defn: Class Method

N Routine that belongs to class Circle, not a specific inst.
public class Circle {
static int numCircles = 0; // class variable, count num of instances
public double x, y, r; // instance variables: center and radius

public Circle(double x, double y, double r) {
this.x = x; this.y=y; this.r =r;
numCircles++; MEMORY

public Circle(double r) { this(0.0, 0.0, r); }

§ fred 2
public Circle biggerlInst(Circle c) { Circle
if (c.r > r) return c; else return this; QU
}

¢ [IED

public static Circle biggerClass(Circle a, Circle b) {
if(a.r > b.r) return a; else return b;

}

} again assumes
Circle lucy = bi/vggerCIass(/f:ed, eth‘l); ethyl is bigger
Class 2 parameters
method that are Circles ©R, Rutenbar 2001 Fall 18-760 Page 36

Page 18

Why This Matters

Ut explains a whole lot of arcane Java syntax

N Example: how do you print to stdout?

System.out.printin(‘ a string” + var + “another string’’);

TT

Instance Instance Method

N Example: how do you do a square root?
double y = Math.sqrt(x);

Class Instance Method

© R. Rutenbar 2001 Fall 18-760 Page 37

Why This Matters

Y How do you compare 2 strings?
N Notlike this

String s = “hello”;

if (s == “hello”) ...

N Like this
String s = “hello”’;
if (s.equals(“hello”))

© R. Rutenbar 2001 Fall 18-760 Page 38

Page 19

Class Defn: Class Constructors

N Routine(s) with same name as class, called by “new”
public class Circle {
static int numCircles = 0; // class variable, count num of instances
public double x, y, r; // instance variables: center and radius

v v v
public Circle(double x, double y, double r) {
this.x = x; this.y=y; this.r =r;
numCircles++;

public Circle(double r) { this(0.0, 0.0, r); }

public Circle biggerInst(Circle c) {
if (c.r > r) return c; else return this;
}

public static Circle biggerClass(Circle a, Circle b) {
if(a.r > b.r) return a; else return b;
}

}

Circle fred, ethyl;

fred = new Circle(0.0,2.0,3.0);
ethyl = new Circle(5.0); © R. Rutenbar 2001

Fall 18-760 Page 39

Class Defn: Class Constructors

N Can have different versions that take different args (like C++)
public class Circle {
static int numCircles = 0; // class variable, count num of instances
public double x, y, r; // instance variables: center and radius

public Circle(double x, double y, double r) {
this.x = x; this.y=y; this.r =r;
numCircles++;
1

;:ublic Circle(double K) { tlliis(0.0, 0.0, r); }

public Circle biggerInst(Circle c) {
if (c.r > r) return c; else return this;

public static Circle biggerClass(Circle a, Circle b) {
if(a.r > b.r) return a; else return b;
}

}

Circle fred, ethyl;

fred = new Circle(0.0,2.0,3.0);
ethyl = new Circle(5.03; ©R. Rutenbar 2001

Fall 18-760 Page 40

Page 20

Class Defn: Class Destructor

n Java it’s called a “finalizer”

» It’s an instance method (non-static), takes no args, returns void, must
be called finalize()

N What finalize() does NOT do

» It doesn’t delete your object memory.

» Java is garbage collected so when something has no users referencing it,
it gets automatically deleted

» Unlike C++, where you’d need a ~Circle() method to kill the object

X What finalize() does do

» It releases resources that the garbage collector cannot see
» Examples: file descriptors, network sockets, etc.

» Stuff you want to “‘close” before you quit

» Java calls the finalizer() before it garbage collects the object

© R. Rutenbar 2001 Fall 18-760 Page 41

Class Defns: Inheritance

class Circle {

}
\ inherits.... public class GraphicCircle extends Circle {
/I automatically inherit old Circle
class GraphicsCircle { /I methods and vars
Il we omit a constructor for clarity
}
Color outline, fill;
Want a new kind of circle that public void draw(DrawWindow dw) {
has all the old properties, but dw.drawCircle(x, y, r, outline, fill);
also has new methods to }
draw a circle on the screen. }
Don’t have to make a whole new [luse it. - ?xamples L
class, you inherit the old stuff GraphicCircle c = new GraphicCircle;
’ GraphicCircle d = new GraphicCircle;
c.draw(aWindow);
Circle e = biggerClass(c, d);

© R. Rutenbar 2001 Fall 18-760 Page 42

Page 21

Class Defns: Multiple Inheritance

N Can I inherit from > 1 super-class? Basically, no....

class Circle { class DrawStuff {
} }
\ inherits.../
class GraphicsCircle { In C++ you can inherit the actual
implementation of different methods
} from more than one parent class.

In Java, you can inherit actual
method implementations from
just | parent class.

So -- is there something like multiple
inheritance in Java? yes...
© R. Rutenbar 2001 Fall 18-760 Page 43

Class Defns: Interfaces

N An interface is just a class def that defines the names and
params of its methods, but no “code guts” for them.

class Circle { class DrawStuff { public interface DrawStuff {
public void aMethod(.....);
} } public void bMethod(.....);

}
\ inherits....

public class GraphicCircle

extends Circle implements DrawStuff {
/I you must add real code for all the
} /I public methods in Draw Stuff

class GraphicsCircle {

public void aMethod(...) {
code; code; code;

}

public void bMethod(...) {
code; code; code;

}

}

© R. Rutenbar 2001 Fall 18-760 Page 44

Page 22

Aside: So, Now You Know How to do an Applet

import java.awt.Graphics;
import java.util.Date;

public class Clock extends java.applet.Applet implements Runnable {

Thread clockThread = null;
public void start() {

if (clockThread == null) {

clockThread = new Thread(this, "Clock");
clockThread.start();

We must implement
these methods
(which are from the
Runnable interface)
so a browser knows
what to call to
“run” our applet

}

}
public void run() {
1 loop terminates when clockThread is set to null in stop()
while (Thread.currentThread() == clockThread) {
repaint();
try {
Thread.sleep(1000);
} catch (InterruptedException e){
}
}

}

public void paint(Graphics g) {
Date now = new Date();
g.drawString(now.getHours() + ":" + now.getMinutes() + ":" + now.getSeconds(), 5, 10);

public void stop() {
clockThread = null;
}

}
© R. Rutenbar 2001 Fall 18-760 Page 45

Clock Applet, Running

Netscape: The Clock Apple

@ & A 4 2 £ @G 5 &

Back Forward Reload Home Search Guide Images Print Security

7. Location: g [nttp /7 java.sun wom /docs fbooks tutor ial/Javad threads felock htm)]

Thresds of Comptrof

The Clock Applet ; g not:)

/’jﬁ\ The Clock applet shown below displays the current time and updates its display every second. You
can screll this page and perform other tasks while the clock continues to update because the code that

This app'et the clock's display runs within its own thread
just updates
a little on highlights and explains the source code for the clock applet in detail. In particular, this

I k “t t" page describes the code segments that implement the clock's threaded behawvior; it does not describe
cloc ex the code segments that are related to the life cycle of the applet. If you have not written Four own
applets before or are not farmdliar with the life eyele of any applet, you may want to take this time to

every sec
. familiarize yourself with the material in The Life Cycle of an Ap_pleta before proceeding with this
In your page
browser Deciding to Use the Runnable Interface
window.

The Clock applet uses the Punnable interface to provide the run method for its thread
Te run within a Java-compatible browser, the Clock class has to derive from the
applet class. However, the Clock applet also needs to use a thread so that it can
Pretty continucusly update its display without taking over the process in which it 1s running.
[Some browsers might create a new thread for every applet to prevent a mishehaved

cool, huh?

Page 23

Java l/O

N Pretty rich set of features
» Support for C-like command line input
» Support for networks
» Support for graphics, and interacting with a browser
» Support for file (byte stream) 1O from your local host file system

X We will look at just 3 of these, a little bit
» Doing command line input
» Doing file stream 1O
» Very simple paint-a-rectangle-on-a-window sort of graphics

© R. Rutenbar 2001 Fall 18-760 Page 47

Command Line 1/0

A lot like ordinary C, but with nicer string vars

» Also platform dependent. You may actually type on a command line to
run the code + its arguments, or Java may pop up a window and ask.

public static void main (String args[]) {
String Infile = new String("example.in");
String Outfile = new String("example.out");
if (args.length == 1) {
Infile = args[0];

if (args.length == 2) {
Infile = args[0];
Outfile = args[1];
}
if (args.length > 2) {
System.err.printin("'l don't know how to handle that many command " +
"line arguments.");
System.err.printin("Please try again.\n");
System.exit(-1);

}

© R. Rutenbar 2001 Fall 18-760 Page 48

Page 24

File /0: Opening and Closing the Flile

Java has rich support for various kinds of data streams

try {
DatalnputStream Inpfile =
new DatalnputStream(new FilelnputStream(Infile));
String Lineln = Inpfile.readLine();
if (Lineln == null) {
System.err.printin("There is no data on the first line of the " +
"input file.");
System.err.printin("Not cool, get a real data file.");
System.exit(-1);
}
... Il stuff to read the file...
Inpfile.close();
} catch (IOException e) {
System.err.printin("\nWe are having trouble opening and reading " +
"the file: " + Infile);
System.err.printin("We get the error: " + e + "\n");
System.exit(-1);

© R. Rutenbar 2001 Fall 18-760 Page 49

File I/0: Actually Reading the Flle

~ How do I do fscanf(fileID, “%d %d”, &X, &Y)...?

» Several ways involving a tokenizer

» You tokenize a file stream by recognizing that the chars really form tokens
that represent readable stuff like ints and floats and Strings, which are
separated by ‘“‘white space” like spaces and tabs.

» A tokenizer skips over the white space and hands you the next token.
» If you know what to expect, you can just parse for the right int, float, etc
» (If not (more general case) you can ask Java what the next token was.)

String Lineln = Inpfile.readLine(); String to read
StringTokenizer Dataln = new StringTokenizer(Lineln, " "');

X = Integer.parselnt(Dataln.nextToken());

Y = Integer.parselnt(Dataln.nextToken()); White-space defn
Width = Integer.parselnt(Dataln.nextToken());

Height = Integer.parselnt(Dataln.nextToken());

Lineln = Inpfile.readLine();

Dataln = new StringTokenizer(Lineln, " ");

R = Integer.parselnt(Dataln.nextToken());

G = Integer.parselnt(Dataln.nextToken());

B = Integer.parselnt(Dataln.nextToken());
©R. Rutenbar 2001 Fall 18-760 Page 50

Page 25

File I/O: Subtle Stuff

N String Lineln = Inpfile.readLine();

» Reads one return-delimited line from Inpfile and sticks it in a String

N StringTokenizer Dataln = new StringTokenizer(Lineln, " ");
» Looks at the String Lineln, and tells the tokenizer that whitespace = “

» Makes a new “tokenized” object that we can yank tokens (inputs) out
of, one by one, in order

XX = Integer.parselnt(Dataln.nextToken());
» We expect this to be a fscanf(file, “%d”, &x) sort of thing...
» X is just an int, ie, int X;
» But “int” is not an object, it’s a primitive type

» All primitive types have an associated class object def--in this case
Integer-- where useful class methods live.

» The useful method we want is “parselnt” which yanks the next int out
of this tokenized data stream, and returns a primitive int

© R. Rutenbar 2001 Fall 18-760 Page 51

File 1/0: Printing to a Flle

' Very similar stream-based idea

» Remember how ordinary stdout was: System.out.printin(“stuff’)...?

try {
FileOutputStream ostream = new FileOutputStream(Outfile);
PrintStream Ourprint = new PrintStream(ostream);
Ourprint.printin("Here is the results of our 760 Java example " +
"program.”);
Ourprint.printin("The data on the rectangle we drew is:\n\t" +
ADrawnRect + "\n");
Ourprint.close();
} catch (IOException e) {
System.err.printin("\nWe are having trouble writing to the file: " +
Outfile);
System.err.printin("We get the error: " + e + "\n"");
System.exit(-1);

© R. Rutenbar 2001 Fall 18-760 Page 52

Page 26

Java l/O: Simple Drawing

N Pretty rich set of drawing classes called “awt”

» Java ‘“‘abstract windowing toolkit”; get it via: import java.awt.*;

X 3 kinds of objects in the awt
» Graphics: classes that define colors, fonts, images, etc

» Components: classes are graphical user interface (GUI) components like
buttons, menus, lists, dialog boxes

» Layout managers: classes that control the layout of other graphics
components within their Java “containers”

N Java hierarchy for us

... a GUI object ’ Component H

...it holds other GUI objects ’ Container ‘j

...it’s a window on a screen ’ Window ‘—;

...it’s a top-level resizable window with

. Frame ‘
a menu bar, cursor, icon

© R. Rutenbar 2001 Fall 18-760 Page 53

Example: Drawing a Rectangle in a Frame

N From our small example again

class my_rect extends Frame {
private int x,y;
private int height, width;
private int area;
private Color color;
private String Title;

llconstructor
public my_rect(int Xin, int Yin, int Widthin, int Heightin, Color Colorin,
String Titlein) {

x = Xin;

y =Yin;
width = Widthin;
height = Heightin; Component H
color = Colorin; ’

Title = Titlein;
area = width * height;

Container ‘j

— Window ‘_;

thi
thi ’ E ‘
thi ' rame

lines show where we inherit thgse gpethe 98 Fall 18-760 Page 54

Page 27

Example: Drawing a Rectangle in a Frame

’ Component

paint() method defined here, but Container ‘j
we have to write the body code for it ’

Window ‘—+

| Frame |

I* This paint procedure is called by the system, to update the window.
All drawing objects need to live here. */
public void paint(Graphics g) {
g.setColor(color);
g fillRect(x,y,width,height);
g.setColor(Color.black);
g.drawString("Close the window to end the program™,10,390);

}

The Graphics class defines the platform-dependent
drawing primitive. A “graphics” object gets
allocated by Java (by Container) and passed

to the paint() method. Then you call graphics
instance methods to really draw stuff

© R. Rutenbar 2001 Fall 18-760 Page 55

What Does This Code Actually Do...?

A TO run it: 760 Java Example Program = O] =]

» Put code in
‘““example.java’ and
data in ‘“example.in”

» To compile, type:
javac example.java

» Generates “.class” files
holding Java byte codes
for all your classes

» To run it, type:
java example

» It does this when run ’

on IBM AIX UNIX...

Clase the window to end the program

© R. Rutenbar 2001 Fall 18-760 Page 56

Page 28

Aside: AWT versus Swing in JAVA

N Newer graphics components called “Swing”
» Quoting from http://pandonia.canberra.edu.au/java/swingtut/tut2.html:

X Evolution of Java GUI programming

» The AWT (Abstract Window Toolkit) has been present in all versions of
Java

» The AWT objects are built above native code objects, giving a native
look-and-feel

» The AWT objects are a least common denominator of all platforms
» The Swing objects are a separate library for [old, early] JDK 1.1

» The Swing objects are in pure Java, and have the same look-and-feel on
all platforms

» The L&F [look & feel] of Swing objects can be customised to particular
styles

» In JDK 1.2, the Swing objects are part of the Java Foundation Classes
» The JFC objects will provide a superset of each platform’s objects
» The AWT objects will decrease in importance over time

© R. Rutenbar 2001 Fall 18-760 Page 57

N nteresting, elegantly designed O-O language
» C-like syntax, but O-O stuff much tidier than in C++
» Rich collection of libraries and reusable objects
» Fairly portable (all the UNIXs, Windows, Mac, etc)
» Interpreted & garbage collected & strongly typed: pretty robust

N Do people really do CAD in this?
» Well—not much. People are doing GUIs and some configurable IP.
» People are doing network downloadable applets now.
» But “real’ applications? -- Java is still too slow and too much memory
» Compiler guys are working on real (not interpreted, fast) versions

N Why for 760?

» It’s very portable. Has nice library of useful data structures, methods.
» As a nice, friendly prototyping language, it’s hard to beat.

© R. Rutenbar 2001 Fall 18-760 Page 58

Page 29

...But, There is Some JAVA CAD Out There...

| o - = - D5 3 Saarch | o) Favertas

| s [swtro. comistryice s acsonms v gt |

August 31 2001
EETimes online
See:

http://Iwww.eetimes.com/story/
OEG2001083150086

September G, 2001

ot by:

@ApplianceWeb

pr—
oy
CADENCE P =% wELY
semecmme (GE) DESIGN AUTOMATION
WEWS EHANNELS
Sambuaninis
AR
Entmiing

Lab to offer open-source Java-based FPGA tool

Oy Rishord Goering
EE Times
(003101, 40 g, EETY

Register
for a FREE
Show Pass
¢ to Product
" Exhibits

. and
Special

y Events!

d: ot
a0 syrEhese than Variag,

=

B

CARIERS

Eea

fpaa

Patattee Resd

EVINTS

f=r? hag gl d al
BB oL s e o
PRODUCTWEEE

j-TTARTEIN. PO

g

=

=

DTN NETWORK

.

4540 and Wirbsx FFGA devices, A key JHDL feature is & * Halsbias se
oth 51 a

nd hardware ESSERSERRE

e abienes of
at the structiral levsl,

ins 4003 technolagy, thare are & lok of mubisliess resuired, and we
just doweri . oL

b do 8 [
e lab and an assocate pr
5

+ And it gt asar b dal
Oct. 1-a.

3

©'RTRE4€lenbar 2001 Fall 18-760 Page 59

] [[

Page 30

