18-347 Lecture 5

Computer Arithmetic I:
Adders & Shifters

Prof. Rob Rutenbar
rutenbar@ece.cmu.edu
http://www.ece.cmu.edu/~ece347

Note bug fixes on a few slides,
as done in lecture...
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Readings for the Week/Announcements

» Today
> Chapter 4, Sections 4.1-4.5

» Wednesday
> Chapter 4, Section 4.6

» Readings for each lecture: on the class web page
> http:/lwww.ece.cmu.edu/~ece347/lectures
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Computer Arithmetic—Why Bother?

» Computer architecture sounds “cool”

> Easy to impress your friends, potential employers, Mom

» Computer arithmetic sounds “not”
> Sounds remedial, low-level, tedious

» So...why do this? 3 big reasons

> Lots of microarchitecture ends up composed of fast adders, shifters, etc,
> Increasing number of applications depend on fast or special computation
> Scientific apps — predicting the weather, media apps — mpeg, mp3
> You don’t know how to build the very fast components we need to use today

> There are standard digital designs for fast adders, shifters, etc.
> Present several interesting speed/complexity tradeoffs
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Today’s Menu:

» Stuff we assume you remember
> Basic signed representations, basic ripple-carry adders

» Stuff we assume you don’t remember (or never saw)
> Fast adder design—basic lookahead carry architectures
> Recursive lookahead architectures for very wide, fast adders

» New stuff
> ALU design—for the MIPS ISA
> Shifter design
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Basics: Two’s Complement Numbers

» 2s comp. encodes negative nums via an arithmetic transform
> Like a regular, weighted binary representation, but most significant bit weight is negative
> For example, for 32 bits

0000 0000 0000 0000 0000 0000 0000 0000, = O,

0000 0000 0000 0000 0000 0000 0000 0001, = + 1,

0000 0000 0000 0000 0000 0000 0000 0010, = + 2,

0111 1111 1111 1111 1111 1111 1111 1110, 2,147,483,646,.. _ maxint
0111 1111 1111 1111 1111 1111 1111 1111, 2,147,483,647, 7

1000 0000 0000 0000 0000 0000 0000 0000,
1000 0000 0000 0000 0000 0000 0000 0001,
1000 0000 0000 0000 0000 0000 0000 0010,

2,147,483,648ten\ .
2,147,483,647, minint
2,147,483,646,

o+ o+

1111 1111 1111 1111 1111 1111 1111 1101

two = = Sten
1111 1111 1111 1111 1111 1111 1111 1110, = 2,00
1111 1111 1111 1111 1111 1111 1111 1111 = -1

two ten

by (-231) + byy (2%0) + byg (229) + ... + b, (2') + by (29)
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Two's Complement Operations

» Negating a 2s complement number: invert all bits and add 1

> Remember: “negate” and “invert” are quite different!

» Converting n-bit numbers into numbers with more than n bits:

> You have to do sign extension: copy 2s comp sign bit into higher order bits

msb Isb msb Isb
(00000000 0xxxxxx%xX 117117177177 xxxxxx¥
— —
sign extend 0 sign extend 1,
this num is negative
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Application in the MIPS ISA

» Arithmetic on MIPS 16 bit immediates

> MIPS 16 bit immediate gets converted to 32 bits 2s complement for arithmetic

» MIPS ISA weirdness...

> MIPS instruction add immediate unsigned addiu sign-extends it 16-bit immediate field
> This is not what the name suggests the instruction does

> Despite its name, addiu is used to add constants to signed integers when we don’t care
about overflow (more later — ie, when the num gets too big or too negative)

> MIPS has no subtract immediate instruction and negative nums need sign extension, so
the MIPS architects decided to sign-extend the immediate field to make it possible to do a
sort of “subtract immediate” by adding a negative 16bit immediate
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Basics: Binary Addition & Subtraction

» Just like in grade school (carry/borrow 1s)
0111 0111 0110
+ 0110 - 0110 - 0101

» Two's complement operations easy

> Subtraction accomplished by doing addition of negative numbers
0111 ¢=m positive7
+ 1010 4=m negative 6

carrysmp 1 0001 4=m positive 1, and we usually ignore carry/borrow out

» ....except in cases of overflow and underflow

> Overflow: result too positive (too big) for finite computer word)
> Underflow: result is too negative for finite computer word
> And, it's NOT just the presence of a carry or borrow out of the top bit!
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Detecting 2s Complement Overflow

» Its generically just called “overflow”

» When can it not happen?
> No overflow when adding a positive and a negative number
> No overflow when signs are the same for subtraction

» When can it actually happen?
> You overflowed when adding two positives yields a negative
> or, adding two negatives gives a positive
> or, subtract a negative from a positive and get a negative
> or, subtract a positive from a negative and get a positive
» Consider the operations A+B,and A-B
> Can overflow occur if Bis 0 ?
> Can overflow occur if Ais 0 ?
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Effects of Overflow

» An exception (interrupt) occurs
> Control jumps to predefined address for exception
> Interrupted address is saved for possible resumption
> Details based on software system / language
» Don't always want to detect overflow: unsigned MIPS instructions
addu, addiu, subu
> Remember: addiu still sign-extends!
> Note: sltu, sltiu for unsigned comparisons

» Let’s look at implementing addition...
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Basics: 1-bit Full Adder Implementation

a b Truth Table Truth Table

A B Cl |S A B CI co

i l 0 0 O 0 0 0 O 0

. 0 0 1 1 0 0 1 0

Carry out ab Carry in 0 1 0 1 01 0 0

<+ <

coc 01 1|0 0 1 1 1

l 1 0 0 1 1 0 O 0

1 0 1 0 1 0 1 1

S=sum= a+b 11010 11 0 1
1 1 1 1 1 1 1 1

Standard Approach: 6 Gates (or 5 Gates)

> HEoA
o > : :jD
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Basics: Ripple-Carry Adder Revisited

af ES ai biz al tl‘l a(i tI)

ca | 2P| c3 c2 c1[ab] co

<+—(CO Cl|*<—{co cli|[*—|co cl|[*—|co cI|+

' ¢ | '

s3 s2 s1 s0
Gl BA Gl BA Cl BA Gl BA
4 4 4
RB REZ REZ
co s co s co s co S
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What’s Wrong with the Ripple Carry Adder?

» It's too slow for wide (32bit, 64 bit) addition.

» How slow...? Consider a fast modern processor
> Runs at ~ 1GHz, so clock period is ~ 1ns

>

" ns = 1000ps

You have roughly 1000ps

to get out of the flip flops (FFs),

thru the combinational logic,

and back into the next FFs.

How many gates deep can this be?
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What’s Wrong with the Ripple Carry Adder?

» Logic depth depends on semiconductor technology
> A reasonable, current model of “the delay of 1 typical gate” is called the FO4 delay
> It's the delay thru one ordinary inverter, driven by an inverter, loaded by 4 inverters
> Metric is from Mark Horowitz of Stanford, one of the original MIPS guys

FO4 delay is
delay thru this
one inverter

» FO4 delay has been falling off linearly with technology scaling

> Pretty good formula for worst case FO4 delay: 0.5 ns/micron * (process feature size)
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What’s Wrong with the Ripple Carry Adder?

» Using the FO4 formula
> Ina process with 0.5micron CMOS features: FO4 = 0.5 * 0.5 = 0.25ns = 250ps
> In aleading edge 0.15micron process: FO4 = 0.5 * 0.15 = 0.075ns = 75ps
> At 1GHz, with FO4=75ps/gate, you get 1000ps/75ps = 13 gate delays in 1 clock tick

a63 b63 a2 b2 al b1 a0 b0

§ [

a ab b b
<o cik o000 co |« c; ci|« ° ci) cl —

¥ | Il

s63 s2 s1 s0
— _/

~

At roughly 2 gate delays per full adder, this ripple Adder is at ~ 64*2 FO4 delays.
Can YOU build a 64 bit adder with only 13 gate delays??
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Aside: Levels of Gates Per Clock in uPs

» Gates/clock, normalized via FO4 delay, have been falling
> Clock speeds have just been scaling aggressively, but...there’s a limit here
> It's hard to design a processor with only 16 gate delays per clock tick. Very hard for 8/tick

100.00 +
B
%
2
)
3
g
e 1 Data from
<Or +gen:gum I .
2 enfium Mark Horowitz,
10.00 1 1 1 1 | EE Dept
Dec-83 Dec-86 Dec-89 Dec-92 Dec-95 Dec-98 Stanford UnIV
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Design Trick: Fast Adders via Lookahead

» Basic problem
> Ripple path for carry is proportional to number of bits in the adder
> We need to fix this: it needs to be constant, at least for “small” adders
> The only solution is more hardware in a “small chunk of adder”, typically a 4bit adder
> Luckily enough, there’s a nice, elegant, fairly simple pattern to this stuff

3 a2 b2 a

Wy

<ic4 R C3 o :I c2 c1 a_b‘m
} ' ! '

s3 s2 s1 s0

Y
w

<+

!

Qq |— =
Q gl«—=
<4

<«

o
2
0
O
o
Lo}
Qe
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Basic Lookahead Adder

» For 4bit adder, can we compute all intermediate carries directly?

a3 b3 a2 b2 a1l b1 a0 bo

' 2 ) )

Carry lookahead logic unit

ca | 2 b c3 ab c2 [ab c1 | ab] Co
«=--{co clf<- | co cI| <« [co ci|<"|co ci| "

' ¢ | '

s3 s2 s1 s0
Dotted grey arrows show old path
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Basic Lookahead Adder

» Turns out there’s a nice pattern to the logic in this lookahead box
> Think about a single full adder, and how carries *happen” in it
> Turns out, there’s exactly 2 ways a carryout “happens’, ie, can get set to be “1”

a b a b a b
l l Cout l l Cin Cout i l Cin
Cout| 2 b | Cin = a =77 = b | =
<«—|co cl|+ —|@Fci|— - <+
SlYm sum sum
Question: when will Question: when will
a carryout be generated a carryout be propagated
independent of value from carryin, thru the adder?
of the carryin bit?
Answer: when a=1 && b=1 Answer: whena !=b
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Basic Lookahead Adder

» Give these 2 unique “carry happens” events names
> When a,b are set so that a carryout is just generated: g = generate = a*b
> When a,b are set so that a carryin passes to be carrout: p = propagate =a @ b

» Write equation for carryout for a single adder in this notation

T

Carryout = “either | generated it,
or, | propagated the

o |e—o
O Tle—

carryin to carryout” Cout Cin
<+<—|co cl|*
=9 * p*Cm smYm
= (ab) + (a @ b)*Cin
Baic Lookahead Adder

» With this notation, can see “pattern” for each intermediate carry
> Look at the 4bit adder up close, let's write a direct equation for EACH carry we need

a3 b3 a2 b2
b vV
7 I -
| J
s3 s2

C1=9g0 + poCO
ie, either stage0 generated it
or, CO propagated thru stage 0
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Baic Lookahead Adder

» Keep going, use the pattern

> Look at the 4bit adder up close, let's write a direct equation for EACH carry we need

a3 i3 a2 b2 a1l b1 a0 b0
2! } y
)
ol e | o g o

A

s1 s0

C2=g1+pig0+p1p0CO

ie, either stage1 generated it
or, stage1 propagated a carry generated in stage0
or, stage1 and stage3 propagated the Cin
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Baic Lookahead Adder

» Keep going, use the pattern

> Look at the 4bit adder up close, let's write a direct equation for EACH carry we need

a3 b3 a2 b2 a1l b1 a0 bo

' . | { |

C3 =92 + p2g1 + p2p190 + p2p1p0CO
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Baic Lookahead Adder

» Keep going, use the pattern
> Look at the 4bit adder up close, let's write a direct equation for EACH carry we need

al b1

C4 =93 + p3g2 + p3p2g1 + p3p2p190 + p3p2p1p0CO
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Basic Lookahead Adder

» So—YES, we can do all the carries directly, no ripples at all
> Why is this fast? Each carry equation is a SOP 2-level form, 2 FO4 delays to compute

a3 i3 a2 b2 al b1 a0 b0

' b ! l

Carry lookahead logic unit

C1=g0+poCO

C2=g1+p1g0+ p1p0CO

C3 =92+ p2g1 + p2p1g0 + p2p1p0CO

C4 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0CO

«—3
ca ab c3 ab c2 ab c1 ab co
CO Ci CO CI CO CI CO CI
s3 s2 s1 s0
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Basic Lookahead Adder

» How fastis it? ~4 gate delays thru the whole 4bit adder

a3 b3 a2 b2 a1l b1 a0 b0
vy vl !
Carry lookahead logic unit 1 gate delay to compute all p’s, g's
C1=g0+ poCO
C2=g1+p1g0 +p1p0CO 2 more gate delays

C3 =92+ p2g1 +p2p1g0 + p2p1p0CO
C4 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0CO to compute all Cs

—]
c4 <Jcs c2 c1 co 1more gate delay
to compute all sums—
si=ai ® bi® Ci
s3 s2 s1 s0

@ Ci
=1 more delay

BUG fixed here
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Beyond Basic Lookahead

> Neat digital trick. What keeps us for doing this for 64bits?
> The lookahead equations for the individual intermediate carries get too complex
> Carry Cn has (n+1) terms ORed, and the biggest AND has n terms in it.

a3 b3 a2 b2 a1l b1 a0 bo

'y Vi ! L

Carry lookahead logic unit

C1=90 + poCO

C2=g1+p1g0 + p1p0CO

C3 =92 +p291 + p2p1g0 + p2p1p0CO

C4 =93+ p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0CO ]

4—]
ca ab c3 ab c2 ab c1 ab co
CO CI CO Ci CO Ci CO Ci
s3 s2 s1 s0
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Beyond Basic Lookahead: Recursive Lookahead

» Another wonderful, elegant trick that gives a useful pattern
> The exact same set of formulas works to apply these ideas recursively
> The question is: what are we recursing on? And, in hardware?

» Big trick: the lookahead equations for the carries do not care
how big the individual adders were that gave us the g, p signals
> We derived these for the “generate from” and “propagate across” 1-bit adders
> You can do the same think for N-bit adders. In our case, 4-bit adders
> Now, the g, p signals are commonly written G, P, called “group” generate, propagate
> Your book calls them “super” generate and propagate
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Recursive, Group Lookahead

» We derived this lookahead structure

a3 i3 a2 b2 al b1 a0 b0

' 2 ! l

Carry lookahead logic unit

Make C4, C3, C3, C1 directly from a,b input, and CO

T
ca ab c3 ab c2 ab c1 ab co
CO CI CO CI

CO Ci CO CI
| | } |
s3 s2 s1 s0
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Recursive Group Lookahead

> Lets redraw it to separate out the p’s, g’s, and the carry logic

Carry lookahead logic unit
Make C4, C3, C3, C1 directly from P, ¢ inputs, and CO

p3 g3 p2 g2 pl g1l p0 g0

<_| A A A A A4 A A
a3 b3 a2 b2 al b1 a

i ) |

b
c4 c3 b c2 b c1 PP co
co ci co cI co ci co cI

s3 s2 s1 s0
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Recursive Group Lookahead

» Big idea: as long as the p’s, g’s are correct, same lookahead unit
will work for wider adders at the bottom

Carry lookahead logic unit
Make C16, C12, C8, C4 directly from P, G inputs, and C0 co

A

AA A A AA [

bits!15..12] blts 11..8 blts!7 4| bits!3..0|

ab a b ab ab
C4
co (o] cO (o]

s[15..12] s[11..8] s[7..4] s[3..0]

C16 P P PG
+—

A
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Recursive Group Lookahead

] Lookahead carry logic Lookahead logic for
p3ig3 p2,g2 p1’g1 p0.q0 1b|t adderS. .
ab ab ab ab
add add add add
sum3 sum3 sum3 sum3
Lookahead carry logic Is identical for
Cdne— wider, n-bit adders
P3,G3 P2,G2 P1,G1 P0.GO '
ab ab ab ab at the bottom!
n-bit DIGE n-bit PISGE n-bit DI n-bit €0
add add add add

sum[4n-1..3n] sum[3n-1..2n] sum[2n-1.n]  sum[n-1..0]
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Why We Think of it as Recursive

Lookahead carry logic
P3,G3 P2,G2 ~PT P0.GO0

Céne—

€0 Jfn=4 here, then
each wider adder
could be a lookahead
4-bit adder, as
shown here

Lookahead carry logic

p3,93 p2,92 p1.91 p0.00
ab ab ab ab
add add add add

sum3 sum3 sum3 sum3
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What's Missing Here?

» We need to know how to generate the group-level signals P, G
> With these, we can use this fast 4 bit adder as a component in a wider, lookahead adder

P, G ==77?

il

el Lookahead carry logic
p3.93 p2,g2 p1 91 oo,q
ab ab a.b
c3 1b|t 1b|t
add add add
sum3 sum3 sum3 sum3
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Group Level Signals

» Actually, pattern still works fine. Consider group gen=G

> Group generate G = when does the whole 4-bit block generate a carry without us needing
to know value of C0?

b3 a0 b0
$ |
il o C0=77?

' ' '

s3 s2 s1 s0

G = g3 + p3g2 + p3p2g1 + p3p2p1g0 } BUG fixed here
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Group Level Signals

» Consider group propagate P

> Group prop P = when does the whole 4-bit block propagate a carry across all 4 bits right
back from the value of C0?

T3 a2 b2 a1l b1 a0 b0

gl | Iy

ropp3__ 10 ropp2_10 gen

rop p - I-
al l ol

s3 s2

P = p3p2p1p0
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Group Level Lookahead

» And, that's it. A generic lookahead carry logic unit that “looks
across” 4 adders looks like this:

Group signals from
Pf ? 18t n-bit adder unit
Ch Lookahead carry Iog|
P3,G3 P2,G2 P1, G1

n-bit
adder 3

Overall carryout, == carry
into the 41 n-bit adder unit

n- b|t
adder 1

Computed lookahead carry

into the 2™ n-bit adder unit
CMU ECE347 - Spring 2001 Lec.05 - 38




Group Lookahead

» Easiest to see how to do 2 levels of lookahead

» For example: 16bit adder
> Make fast 4 bit adder as we now know how: use 1%t layer of lookahead logic
> Then, make the group generate, propogate P,G signals for each 4 bit adder

> Use another layer of lookahead — exact same lookahead logic !! - to combine 4 of these
fast 4-bit adders, and do lookahead across each 4-bit adder, to get to 16 bits

» Don’t have to stop at 2 levels of lookahead

> To get to 64 bit adder, take this fast 16-bit adder, and combine 4 of them with a
lookahead unit — exact same lookahead logic again !! — to get to 4*16=64 bits

» Variants of these ideas are how wide, fast adders get built
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64 Bit Adder: How Fast, in Gate Delays?

Pf G
Lookahead carry logic .
Cde
P3,G3 P2.G2 P1G1 There will be some

homework problems to
work through the details,
and the delay, on these
recursive adder structures.

16-bit ey 16-bit
adder 3 adder 2

c4 Lookahead carry logic
P3.G3 P2.G2 P16t P0.GO
4-bit A5it AR it

adder 3 A 2 2 addefw

Lookahead carry logic
P2.G2 P1.61

1-bit 1-bit

adder 1
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New Problem: Design a “Fast” ALU for MIPS

» Requirements?

> lts not just adding (and subtracting)

> It also must support the Logic operations — whole-word bit ops like AND, OR
» How?

D> Think about what we can do with each individual bit of this computation (like 1 bit of a
ripple adder is simple to do)

D> Think about how to generalize from the single bit up to the whole ALU...
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MIPS ALU Requirements

» Add, AddU, Sub, SubU, Addl, AddIU

> =>2's complement adder/subtractor with overflow detection

» And, Or, Andl, Orl, Xor, Xori, Nor
> => Logical AND, logical OR, XOR, nor

» SLTI, SLTIU (set less than)

> =>2's complement adder with inverter, check sign bit of result
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MIPS Arithmetic Instruction Format

31 25 20 15 5 0
Rivpe: [ ———
> yp op Rs Rt Rd funct

I-Type: | op Rs Rt Immed 16
Type op funct Type op  funct Type op funct
ADDI 10 xx ADD 00 40 00 50
ADDIU 11 xx ADDU 00 41 00 51
SLTI 12 xx SUB 00 42 SLT 00 52
SLTIU 13 xx SUBU 00 43 SLTU 00 53
ANDI 14 xx AND 00 44
ORI 15 xx OR 00 45
XORI 16 xx XOR 00 46
LUI 17 xx NOR 00 47

CMU ECE347 - Spring 2001
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Design Trick: Divide & Conquer

» Break the problem into simpler pieces, solve each, glue together

» Example:

> Assume the immediates have been
taken care of before the ALU

> 10 operations (4 bits)

CMU ECE347 - Spring 2001

00
01
02
03
04
05
06
07
12
13

add
addU
sub
subU
and
or
xor
nor
sit
sitU
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Refined Requirements

» Functional Specification
> inputs: 2 x 32-bit operands A, B, 4-bit mode
> outputs: 32-bit result S, 1-bit carry, 1 bit overflow
> operations: add, addu, sub, subu, and, or, xor, nor, slt, sltU

» Block Diagram
i 32 i 32
A v B

> ALU m [e—+—

R
132
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Refined Diagram: Bit-slice ALU

Ai32 B/l/32

—— _}d,\ ...........
v
a3T b3 ELY 4
ALUO m<— ALUO . M
< co _,cinle— <+co
s31

Ovflw prm—
I
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Another Way to Think About It

» We want an N-bit ALU. Design 1-bit “slices” of this ALU.

> Then, try to glue them togther like a ripple carry adder

> Remember—ripple adder makes a big adder by letting the carryin-carryout connects glue
all the 1-bit pieces together

Data in

I Control signals

> | e@e@ |bi] [bio

m
>
=
Qv
=

Q
=
&
=
<3

=
o

m
>
=
Q
=)
3
=3
-
<3

=
o
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One Bit of the Bit-Slice Design

» Design trick:
> Take pieces you know (or can imagine) and try to put them together

> Solve part of the problem and extend
S-select

and

v

>
l\JQ
2
=

or Result
csu!

Y

1-bit [add
Full >

Adder /

l CarryOut
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Additional Operations

» A-B=A+(-B)

> Form two’s complement by invert and add one

S-select
invert Carryln
> and
A — d
‘ ﬁ N\ O Result
-~ > Z esu
2/ g
v
> 1-pit [add
Full >
B — Adder /
Set-less-than? — left as an exercise l CarryOut
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Revised Diagram

» LSB and MSB: we need to do a little extra work on these

g

' g
asT b3 au
ALUO [ ALUO M
; <+—co cin
co cinj«— s0
s31 N\ Logic to
| produce
e select,
B - complement,
l Overflow s { 32 and Cin:

Easy stuff
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Overflow Detection Logic

» Carry into MSB xor Carry out of MSB
> For a N-bit ALU: Overflow = CarryIn[N - 1] XOR CarryOut[N - 1]

CarryIn0 l

Al0——p .
I-bit | Resultd

Bo—>L_ALU

CarryInJL CarryOut0

Al—y .
I-bit | Resultl

Bl_> ALU

CarryInAL CarryOutl

A2 .
I-bit | Result2

p—>L_ALU

Carrylndy

A3 :
I-bit | Result3

B>l ALU

*CarryOutS
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X Y X XOR Y
0 0 0
0 1 1
1 0 1
1 1 [}

D Overflow
—_—
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Updated Diagram

» LSB and MSB need to do a little extra

A isz
XOR proper v

carries

\

<« [3a3T b3 au
ALUO ALUO
inle— <+—[co cin
CO o Cin s0

= [

N\ Logic to
produce
select,

l Overflow

CMU ECE347 - Spring 2001

complement,
and c-in
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But What About Performance?

Carryln€] » Critical Path of n-bit ripple
A 1bit | —p Resulto adder way too slow...
Bo—>_ALU

Carrylnl ‘L CarryOut0
Al—l T Ihit |y Result » Perfect place to use the fast
Bl »L_ALU lookahead ideas

Carryln2 ‘L CarryOutl
A2___» .
1-bit | Result2

B2 PL_ALU » Just adds some more “extra
oy Carind y CamyOue logic” around bits in the
—>| it |y Requi itsli i
si—>|_ALU esu bitslice to do the recursive
| lookahead
CarryOut3
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Additional MIPS ALU Requirements

» Mult, MultU, Div, DivU
> Need 32-bit multiply and divide, signed and unsigned
> Next lecture...

» SlI, Srl, Sra
> Need left shift, right shift, right shift arithmetic by 0 to 31 bits

» Nor
> Logical NOR or use 2 steps: (A OR B) XOR 1111....1111

CMU ECE347 - Spring 2001 Lec.05 - 54




Combinational Shifters

» 2types: issue is what bit value gets “shifted in” on the ends?
> 0is obvious first answer, but its not always 0 that gets shifted in...

logical-- value shifted in is always "0"

"o—>{msh_Tsble—0"

arithmetic-- on right shifts, sign extend (ie, copy msb back in)
e
» Note:

> These are single bit shifts.
> A given instruction might request 0 to 32 bits to be shifted!
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New Problem: Big, Fast Shifters

» Take an n-bit word, left or right shift k-bits, programmably. How?
> Answer: a logarithmic shifter structure, done as layers of shifters
> Each layer of the shifter structure can shift 2" bits in one direction.
> Each layer is programmable - either it shifts or not.
> If your word is 2V bits in all, you need N layers of shifters, hence the “log” idea

8-bit num 8-bit num
co?;tbrgl Programmable coﬁggl
= shift Shifter = shift
“distance” “distance”

)
Shifted 8-bit num Shifted 8-bit num
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Big, Fast Shifters

» How do you make any one of these layers of the shifter?
> Out of multiplexors. lts pretty simple —mainly just MUXs and wires

3-bit /
< r;thrﬁtl msh Ish

“distance” o
2bit shift? yes

27

E"‘~-Can shift in 0s, 1s or other values

T

Shifted 8-bit num
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Details: Big, Fast Shifter From MUXes

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
|1 o||1 0||1 o||1 0||1 o||1 0||1 o||1 0|:
S N

[To] [T0] [ 0] [T 0] [T 0] [ 0] [T 0] [T 0]«
| | | | | | | |

8-bit right shifter

—_—

(0] [9] 9] [9] [ 0] [] [ 0] 0]«
] ] ] ] ] ] ] ]

R, R;  Rs R, R, R, R, R,

Basic MUX Building Block .
A B » What comes in the MSBs?
1 |

sel » How many levels for a bigger shifter?

II) > 32 bit shifter? 64bit shifter?

CMU ECE347 - Spring 2001 Lec.05 - 58




Combinational Shifter: Basic Operation

Ag

A A, A A A A, LO1
0o R

Z (L o[t of[t of[t of[t of[t of[t of]t o]
= 1 1 1 1 T T
% O \I 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1
‘2 |1 o||1 0||1 o||1 0||1 o||1 0||1 o||1 0|<
5 0{ | | | | | ] ] ]
= — [l TR e R el TR e T e T wnd T e
|1 o||1 0||1 o||1 0||1 o||1 0||1 o||1 0|<_
] ] ] ] ] ] ] ]
0 0 0 0 0 A A A
7 6 5 AS
Basic MUX Building Block
A8
1
sel
D
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Combinational Shifter: Basic Operation

A Ag Ay AL A A A A 101
i 0 {\I ||\I |I\| ||\I |I\| ||\I |\I ||\I \I |
S 1 o][1 o][1 o][1 1 1 1 1 <
£ [ o] [t of [t of[t of[t of[t of[t of]l o]«
%ﬂ O - (o (I (I (I T (I (I 1
k= |1 0||1 0||1 o||1 0||1 o||1 0||1 o||1 0|:
'_E | ] ] ] ] ] ]
I o=

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
|1 o||1 0||1 o||1 0||1 o||1 0||1 o||1 0|<_
o 0 0 0 0 A A A

Basic MUX Building Block

A B » What comes in the MSBs?
sel > Os here, shifted in from the left
II) > Could be 1s, could be the topmost msb if we wanted
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Summary

» Adders

> Always get built using carry lookahead ideas

» ALUs

> Always get built as regular bit-slices, repeating a basic unit bit design
> Some extra stuff usually requires for lowest and highest bits, and for lookahead

» Shifters

> For a single, fixed shift distance, can just hardwire up the MUXes
> For arbitrary programmable shift distances: barrel shifter, with layers of MUXes
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