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Corner Stitching: A Data-Structuring Technique
for VLSI Layout Tools

JOHN K. OUSTERHOUT

Abstract—Corner stitching is a technique for representing rectangular
two-dimensional objects. It is especially well suited for interactive VLSI
layout editing systems. The data structure has two important features:
first, empty space is represented explicitly; and second, rectangular areas
are stitched together at their corners like a patchwork quilt. This orga-
nization results in fast algorithms (linear or constant expected time) for
searching, creation, deletion, stretching, and compaction. The algorithms
are presented under a simplified model of VLSI circuits, and the storage
requirements of the structure are discussed. Corner stitching has been
implemented in a working layout editor. Initial measurements indicate
that it requires about three times as much memory space as the simplest
possible representation.

1. INTRODUCTION

NTERACTIVE LAYOUT tools for integrated circuits place
special burdens on their internal data structures. The data
structures mus: be able to deal with large amounts of informa-
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tion (one-half million or more geometrical elements in current
layouts [7]) while providing instantaneous response to the de-
signer. As the complexity of design increases, tools must give
more and more powerful assistance to the designer in such areas
as routing and validation. To support these intelligent tools,
the underlying data structures must provide fast geometrical
operations, such as locating neighbors for stretching and com-
paction, and locating empty space for routing. The data struc-
tures must also permit fast incremental modification so that
they can be used in interactive systems.

Corner stitching is a data-structuring technique that meets
these needs. As described here, it is limited to designs with
Manhattan features (horizontal and vertical edges only); but
within that framework it provides a variety of powerful opera-
tions, such as neighbor-finding, stretching, compaction, and
channel-finding. The algorithms for the operations depend only
on local information (the objects in the immediate vicinity of
the operation). Their expected running times are generally
linear in the number of nearby objects; in pathological cases
(which are unlikely for actual layouts) the running times may
be proportional to the overall design size or to the product of
nearby objects and design size. Corner stitching is especially
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effective when the objects are relatively uniform in size, as is
the case for low-level mask features. However, it also works
well when there is variation in feature size. This occurs, for
example, in a hierarchical layout where one cell might contain
a few large subcells and many small wires to connect them
together.

Corner stitching permits modifications to the database to be
made quickly, since only local information is used in making
the updates. Most existing systems that provide powerful opera-
tions such as routing and compaction do not provide inexpen-
sive updates: small changes to the database can result in large
amounts of recomputation. Corner stitching’s combination of
powerful operations and easy updates means that many power-
ful tools previously available only in “batch” mode can now
be embedded in interactive systems.

II. A SiMPLIFIED MODEL oF VLSI LAYOUTS

A VLSI layout is normally specified as a hierarchical collec-
tion of cells, where each cell contains geometrical shapes on
several mask layers and pointers to subcells. As a convenience
in presenting the data structure and algorithms, a simplified
model is used in this paper. There is only a single mask layer,
and hierarchy is ignored. For this paper, the author defines a
““circuit” to be a collection of rectangles. There is a single de-
sign rule in the model: rectangles may not overlap. The simpli-
fied model makes it easier to present the data structure and al-
gorithms. Section VII discusses how the simple model can be
generalized to handle real VLSI layouts.

HI. EX1STING MECHANISMS
3.1. Linked Lists

The simplest possible technique for representing rectangles is
just to keep all of them in a linked list. This technique is used
in the Caesar system [6]: each cell is represented by a list of
rectangles for each of the mask layers. Even though operations
such as neighbor-finding require entire lists to be searched, the
structure works well in Caesar for two reasons. First, large
layouts are broken down hierarchically into many small cells;
only the top-most cells in the hierarchy ever contain more than
a few hundred rectangles or a few children [7]. Second, Caesar
provides only very simple operations like painting and erasing.
More complex functions such as design rule checking and com-
paction could not be implemented efficiently using rectangle
lists.

3.2. Bins

The most popular data structures for VLSI are based on bins
[2]. In bin-based systems, an imaginary square grid divides the
area of the circuit into bins, as in Fig. 1. All of the rectangles
intersecting a particular bin are linked together, and a two-di-
mensional array is used to locate the lists for different bins.
Rectangles in a given area can be located quickly by indexing
into the array and searching the (short) lists of relevant bins.
The bin size is chosen as a tradeoff between time and space:
as bins get larger, it takes longer to search the lists in each bin;
as bins get smaller, rectangles begin to overlap several bins and
hence occupy space on several lists.

Bin structures are most effective when rectangles have nearly

]

Fig. 1. In bin-based data structures, the circuit is divided by an imag-
inary grid, and all the rectangles intersecting a subarea are linked
together.

Fig. 2. Neighbor pointers can be used to indicate horizontal or vertical
adjacency. However, if tile X is moved right, it is hard to update the
vertical pointers without scanning the entire database.

uniform size and spatial distributions; they suffer from space
and/or time inefficiencies when these conditions are not met.
A pathological case is a cell with a few large child cells and
many small rectangles to interconnect them. If bins are small,
there will be many empty bins in the large areas of the subcells,
resulting in wasted space for the bins; if bins are large, the bins
in the wiring area will have many rectangles, resulting in slow
searches. Hierarchical bin structures [4] have recently been
proposed as a solution to the problems of nonuniformity. Al-
though bins can be used to locate all the objects in an area,
they do not directly embody the notion of nearness. To find
the nearest object to a given one, it is necessary to search adja-
cent bins, working out from the object in a spiral fashion. Fur-
thermore, bin structures do not indicate which areas of the chip
are empty; empty areas must be reconstructed by scanning the
bins. The need to constantly scan bins to recreate information
makes bin structures clumsy at best, and inefficient at worst,
especially for operations such as compaction and stretching.

3.3. Neighbor Pointers

A third class of data structures is based on neighbor pointers,
In this technique, each rectangle contains pointers to rectangles
that are adjacent to it in x and y (see Fig. 2). Neighbor point-
ers are a popular data structure for compaction programs such
as Cabbage [3], since they provide information about relation-
ships between objects. For example, a simple graph traversal
can be used as part of compaction to determine the minimum
feasible width of a cell.
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Fig. 3. An example of tiles in a corner-stitched data structure. Solid
tiles are represented with dark lines, space tiles with dotted lines. The
entire area of the circuit is covered with tiles. Space tiles are made
as wide as possible.

Neighbor pointers have two drawbacks. First, modifications
to the structure generally require all the pointers to be recom-
puted. For example, if an object is moved horizontally, as in
Fig. 2, vertical pointers may be invalidated. There is no simple
way to correct the vertical pointers short of scanning the entire
database. The second problem with neighbor pointers is that
they provide no assistance in locating empty space for routing,
since only the occupied space is represented explicitly. For
these two reasons, neighbor pointers do not appear to be well-
suited to interactive systems or those that provide routing aids.

IV. CORNER STITCHING

Corner stitching arose from a consideration of the weaknesses
of the above mechanisms, and has two features that distinguish
it from them. The first important feature is that all space, both
empty and occupied, is represented explicitly in the database.
The second feature is a novel way of linking together the ob-
jects at their corners. These corner stitches permit easy modi-
fication of the database, and lead to efficient implementations
for a variety of operations.

Fig. 3 shows four objects represented in the corner stitching
scheme. The picture resembles a-mosaic with rectangular tiles
of two types, space and solid. The tiles must be rectangles with
sides parallel to the axes. Tiles contain their lower and left
edges, but not their upper or right edges, so every point in the
plane is present in exactly one tile. The entire plane is covered
from -infinity to +infinity in both x and y (in practice, the
largest representable positive and negative numbers are used
for the infinities). Coverage to infinity is achieved by extending
the outermost space tiles; no extra tiles are required.

The space tiles are organized as maximal horizontal strips.
This means that no space tile has other space tiles immediately
to its right or left. When modifying the database, horizontally
adjacent space tiles must be split into shorter tiles and then
joined into maximal strips, as shown in Fig. 4. After making
sure that space tiles are as wide as possible, vertically adjacent
tiles are merged together if they have the same horizontal span.
The representation of space is of no consequence to the VLSI
layout or to the designer, and will not even be visible in real
systems. However, the maximal horizontal strip representation
is crucial to the space and time efficiency of the tools, as we

(d)

Fig. 4. No space tile may have another space tile to its immediate right
or left. In this example, tiles 4 and B in (a) must be split into the
shorter tiles of (b), then merged together into wide strips in (c), and
finally merged vertically in (d).

shall see in Sections V and VI. Among its other properties,
the horizontal-strip representation is unique: there is one and
only one decomposition of space for each arrangement of
solid tiles.

Tiles are linked by a set of pointers at their corners, called
corner stitches. Each tile contains four stitches, two at its
lower-left corner and two at its upper right corner, asillustrated
in Fig. 5. Since there is one pointer in each of the four direc-
tions, the stitches provide a form of sorting that is equivalent
to neighbor pointers. Originally, eight stitches were used, two



90 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-3, NO. 1, JANUARY 1984

Trir

bl*T,

¢

1b
Fig. 5. Each tile is connected to its neighbors by four pointers called
corrier stitches. The names of the stitches indicate the tiles they

point to: the tr stitch points to the tile’s topmost right neighbor, the
1b stitch points to the tile’s leftmost bottom neighbor, and so on.

at each of the four corners, but four turned out to be sufficient
for the algorithms presented here. The choice of these particu-
lar four stitches is important.

The tile/stitch representation has several attractive features,
which will be illustrated in the sections that follow. First, the
mechanism combines both horizontal and vertical pointersin a
single structure. The space tiles provide a form of registration
between the horizontal and vertical information and make it
easy to keep all the pointers up to date as the circuit is modified.
Because the space tiles may vary in size (as opposed to fixed-
size bins), the structure adapts naturally to variations in the
sizes of the solid tiles. The maximal horizontal strip representa-
tion of space results in clean upper bounds on the number of
space tiles and also on the complexity of the algorithms. All
tiles have the same number of pointers to other tiles, so they
occupy the same number of bytes of storage; this simplifies
the database management and reduces the “constant factors”
in algorithms.

V. ALGORITHMS

This section presents algorithms for manipulating the tiles
and corner stitches. The most important attribute of all the
algorithms is their locality: each algorithm depends only on
information in the immediate vicinity of the operation. None
of the algorithms has an expected running time any worse than
linear in the number of tiles in the affected area. Pathological
cases will be shown where the algorithms require time linear,
or even quadratic, in the overall layout size, but in practice
(particularly for VLSI layouts, which tend to be densely packed)
their running times are small and independent of the size of
the layout.

In discussing the performance of the algorithms, the corner
stitches provide a good unit of measure. The complexity of
the algorithms will be discussed in terms of the number of
stitches that must be traversed {or, alternatively, the number
of tiles that must be visited) and/or the number of stitches
that must be modified.

3.1. Point Finding

Several different kinds of searching are facilitated by corner
stitching. One of the most common operations is to find the
tile at a given (x, ¥) location. Fig. 6 illustrates how this can
be done with corner stitching. The algorithm iterates in x and
y, starting from any given tile in the database:

Fig. 6. To locate the tile containing a given point, alternate between
up/down and left/right motions.

1) First move up or down, using right top (rt) and left bottom
(Ib) stitches, until a tile is found whose vertical range contains
the desired point.

2) Then move left or right, using tr and b stitches, until a
tile is found whose horizontal range contains the desired point,

3) Since the horizontal motion may have introduced a ver-
tical misalignment, steps 1} and 2) may have to be iterated
several times to locate the tile containing the point. The con-
vexity of the tiles guarantees that the algorithm will converge.

In the worst case, this algorithm may require every tile in
the entire structure to be searched (this happens, for example,
if all the tiles in the structure are in a single column or row).
Fortunately, the average case behavior is much better than this.
If there are a total of N space or solid tiles and they are of
relatively uniform size, then on the order of \/N tiles will be
passed through in the average case. For a layout containing a
million tiles (which is typical of the fully expanded mask sets
of current VLSI circuits), this means a few thousand tiles will
have to be touched.

In interactive systems, there is a simple way to reduce the
time spent in point finding: keep a pointer around to any tile
in the approximate area where the designer is working. When
a large design is being edited, the designer’s attention is gener-
ally focused on a small piece of the design (e.g., a piece that
can be viewed comfortably on a graphic device). If a hint tile
in this area is remembered for reference, the search time de-
pends only on how much is on the screen, not how large the
design is.

The point-finding algorithm illustrates a general feature of
miost of the algorithms: misalignment. While searching hori-
zontally, it is possible to lose the vertical alignment, so the
algorithm must iterate over horizontal and vertical motions.
See Fig. 6 for an example. In general, large tiles can cause the
algorithms of this paper to wander arbitrarily far outside their
areas of interest. When this happens, the algorithms must
traverse stitches to get back to the desired area again. Extreme
misalignment results in worst-case behavior for many of the
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Fig. 7. The corner stitches provide a simple way to find all the tiles
that touch one side of a given tile.

algorithms. Fortunately, severe misalignment is unlikely for
densely packed designs.

5.2. Neighbor Finding

Another common searching operation is neighbor finding:
find all the tiles that touch one side of a given tile. Neighbor
finding is useful for design rule checking, compaction, circuit
extraction, and tracing out connected nets. Fig. 7 illustrates
how to find all the tiles that touch the right side of a given
tile:

1) Follow the tr stitch of the starting tile to find its topmost
right neighbor.

2) Then trace down through Ib stitches until all the neighbors
have been found (the last neighbor is the first tile encountered
whose lower y coordinate is less than or equal to the lower
¥ coordinate of the starting tile).

Similar algorithms can be devised to search each of the other
sides. The time for the search is linear in the number of neigh-
bors. As shown in Appendix [, the expected number of neigh-
bors is one or two along each side. In layouts where tile sizes
vary greatly, the number of neighbors will, on average, be
proportional to the length of the side.

5.3. Area Searches

A third form of searching is to see if there are any solid tiles
within a given area. This can be accomplished in the following
manner using corner stitches (see Fig. 8):

1) Use the point-finding algorithm to locate the tile contain-
ing the upper left corner of the area of interest.

2) See if the tile is solid. If not, it must be a space tile. See
if its right edge is within the area of interest. Ifso, itisthe edge
of a solid tile. ‘

3) If a solid tile was found in step 2), then the search is com-
plete. If no solid tile was found, then move down to the next
tile touching the right edge of the area of interest. This can
be done either by invoking the point-finding algorithm, or by
traversing the Ib stitch down and then traversing tr stitches
right until the desired tile is found.

4) Repeat steps 2) and 3) until either a solid tile is found or
the bottom of the area of interest is reached.

As with the other operations, the time necessary for this

Fig. 8. To search a rectangular area for a solid tile, work down along the
left edge of the area. Each tile along the edge must be either a solid
tile, a space tile that spans the entire area, or a space tile with a solid
tile just to its right.

operation depends only on local features: the number of tiles
in and around the area of interest. The cost can be measured
by counting the number of stitches that must be traversed.
The number of iterations through the algorithm will be pro-
portional to the height of the area (assuming, as always, a rela-
tively uniform size distribution). In each iteration, it may be
necessary to traverse one stitch in step 2). In addition, step 3)
will cause a misalignment of about 1/2 tile in the average case.
Thus the total running time is linear in the height of the search
area, and does not depend at all on the width of the search
area. In worst-case situations like the one shown in Fig. 9(a),
misalignments could cause the running time to be proportional
to the total number of tiles in the layout.

5.4. Directed Area Enumeration

The algerithm in Section 5.3 determines if there are any solid
tiles in an area. However, for many applications, such as com-
paction and layout rule checking, it is useful to enumerate ai!
the tiles in a given area, i.e., to “visit” each tile exactly once.
Furthermore, it is often useful to do this in a particular direc-
tion. For example, during a left-to-right compaction, it is im-
portant that a tile not be processed until all tiles on itsleft have
been processed. This section presents an algorithm wherein
each tile is visited only after all the tiles above it and to its
left have been visited. I call such an enumeration a directed
enumeration. Corner stitching makes this a linear time opera-
tion. Fig. 10 shows the enumeration order for an example
case.

1) As for the area-searching algorithm, use the point-finding
algorithm to locate the tile at the top left corner of the area of
interest. Then step down through all the tiles along the left
edge, using the same technique as in area searching.

2) For each tile found in step 1), enumerate it recursively
using the R procedure given in lines R1) through RS5).

R1) Enumerate the tile (this will generally involve some
application-specific processing).

R2) If the right edge of the tile is outside of the search
area, then return from the R procedure.

R3) Otherwise, use the neighbor-finding algorithm to lo-
cate all the tiles that touch the right side of the current tile
and also intersect the search area.
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Fig. 9. Two pathological structures. In (a), area searches of the dashed
area are slow because of severe misalignment during step 3) of the
algorithm. It is also slow to create a tile in the dashed area at (a),
which produces the situation in (b), or delete the labeled tile in (b)
to get back the situation in (a): when splitting and merging space
tiles, corner stitches must be modified in every solid tile in the cir-
cuit.

| __ 2 .

AAAAAAAAAA ____9‘;,__,,\

Fig. 10. An example of directed enumeration. When doing an upper
left to lower right enumeration of the dashed area, the tiles will be
visited in order of their numbers.

R4) For each of these neighbors, if the bottom left corner
of the neighbor touches the current tile then call R to enu-
merate the neighbor recursively (for example, this occurs in
Fig. 10 when tile 1 is the current tile and tile 2 is the neigh-
bor).

R5) Or, if the bottom edge of the search area cuts both
the current tile and the neighbor, then call R to enumerate
the neighbor recursively (in Fig. 10, this occurs when tile 8
is the current tile and tile 9 is the neighbor).

The expected running time of the directed enumeration al-
gorithm is linear in the number of tiles intersecting the search
area. This can be shown by the following arguments. The

checks in steps R4) and RS5) guarantee that each tile is enu-
merated exactly once. However, a tile may be checked several
times before satisfying the checks in step R4) or R5): it will be
checked once for each tile that touches its left side. The total
expected running time of the algorithm is thus proporticnal to
the total number of adjacencies within the search area. Ap-
pendix I uses the properties of planar graphs to prove that the
number of adjacencies must be linear in the number of tiles.

In the worst case, directed area enumeration could require
every tile in the circuit to be examined. This happens if tiles
stick out far above the top edge of the area being enumerated:
all of their neighbors must be enumerated in step R3), even
though most of them do not intersect the area of interest.

The algorithm for directed enumeration does not depend on
the fact that space tiles are maximal horizontal strips. In fact,
it does not even distinguish between solid and space tiles. A
similar algorithm can be devised to reverse the direction of
enumeration (from lower right to upper left). But, it is much
more difficult to recode the algorithm to operate from lower
left to upper right, or from upper right to lower left (this is
because there are no corner stitches emanating from the lower
right or upper left corners of tiles).

5.5 Tile Creation

The first step in creating a new solid tile is to check to see
that there are no existing solid tiles in the desired area of the
new tile. The area-search algorithm can check this. The sec-
ond step is to insert the tile into the data structure, clipping
and merging space tiles and updating corner stitches as shown
in Fig. 11. The insertion algorithm is as follows:

1) Find the space tile containing the top edge of the area
to be occupied by the new tile (because of the strip property,
a single space tile must contain the entire edge).

2) Split the top space tile along a horizontal line into a piece
entirely above the new tile and a piece overlapping the new
tile. Update corner stitches in the tiles adjoining the new tile.

3) Find the space tile containing the bottom edge of the
new solid tile, split it in the same fashion, and update stitches
around it.

4) Work down along the left side of the area of the new
tile, as for the area-search algorithm. Each tile along this edge
must be a space tile that spans the entire width of the new
solid tile. Split the space tile into a piece entirely to the left
of the new tile, a piece entirely to the right of the new tile,
and a piece entirely within the new tile. This splitting may
make it possible to merge the left and right remainders verti-
cally with the tiles just above them: merge whenever possible.
Finally, merge the center space tile with the solid tile that is
forming. Each split or merge requires stitches to be updated
in adjoining tiles.

The speed of the creation algorithm is determined by the
cost of splitting and merging the space tiles that cross the area.
The number of space tiles depends on the number of solid
tiles in the left and right shadows of the new tile. One can de-
vise cases where the number of space tiles is arbitrarily high,
but in practice, the expected number is proportional to the
relative height of the new tile in comparison to the tiles around
it. Appendix B discusses the cost of splitting and merging
tiles. In the average case it is constant; for very large tiles it
is proportional to the circumference of the tile. This means
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(b)

Fig. 11. Inserting a new solid tile into the data structure, (a) shows the desired location of the new tile. In (b) the space
tiles containing the top and bottom edges of the new solid tile are split. In (¢) and (d) the area of the new tile is traversed
from top to bottom, splitting and joining space tiles on either side and pointing their stitches at the new solid tile.

that in the worst possible case, the cost of creating a new tile
could be proportional to the total number of tiles in the lay-
out (see Fig. 9(a)). In the average case, the running time is con-
stant if the new tile is about the same size as the tiles around
it; if the new tile is much larger than its neighbors, then the
running time is proportional to the height of the new tile and
independent of its width.

5.6 Tile Deletion

Tile deletion is complicated by the need to split and merge
space tiles so as to maintain the horizontal-strip representa-
tion. The algorithm below works in a mostly clockwise fash-
ion around the tile being deleted, which is referred to as the
dead tile. See Fig. 12 for an example.

1) Change the type of the dead tile to “space”.

2) Use the neighbor-finding algorithm to search from top to
bottom through all the tiles that adjoin the right edge of the
dead tile.

3} For each space tile found in step 2), split either the
neighbor or the dead tile, or both, so that the two tiles have
the same vertical span, then merge the tiles together horizon.
tally.

4) When the bottom edge of the original dead tile is reached,
scan upwards along the left edge of the original dead tile to
find all the space tiles that are left neighbors of the original
dead tile.

5) For each space tile found in step 4), merge the space tile
with the adjoining remains of the original dead tile. Do this
by repeating steps 2)-3), treating the current space tile like the
dead tile in steps 2)-3).

6) It is also necessary to do vertical merging in step 5).
After each horizontal merge in step 5), check to see if the re-

sult tile can be merged with the tiles just above and below it,
and merge if possible.

As with the other algorithms, deletion could require a great
deal of time in pathological cases. For example, Fig. 9(b)
shows a situation where corner stitches will have to be exam-
ined and modified in every single tile in the layout, so running
time will be proportional to the overall layout size. However,
situations like this are not likely in integrated circuits. If the
tiles are roughly uniform in size and distribution, then the
number of splits and joins will be constant and the running
time will also be constant. When a large tile is being deleted,
the running time will be proportional to the number of left
and right neighbors of the tile, which is proportional to the
tile’s height.

5.7 Plowing

Plowing is an example of an important operation that can-
not easily be implemented with most existing data structures.
When one piece of a large design is moved, it is often desirable
for other pieces of the design lying in the path of motion to
move as well, as if the original piece were a plow. ldeally, such
a motion will stretch or shrink the design while maintaining
design rules and connectivity. Plowing can be accomplished
with corner stitching in the following way:

1) Determine the rectangular area that will be swept out by
the motion of the original tile (see Fig. 13).

2) Use the area-finding algorithm to see if there are any
solid tiles in the plow area. If asolid tile is found, invoke the
plow algorithm recursively to move the tile out of the plow
area. Repeat this step until no solid tiles are found.

3) Delete the original tile from its old location and create
it at the new position.
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Fig. 12. An example of tile deletion. In each figure, tile X is the next one to be processed. (a) Shows the initial tile ar-
rangement and the clockwise order in which stitches will be traversed around the dead tile to merge it with adjacent

space tiles,

In (b) the downward sweep along the right edge has been completed (note that the left edge of the dead

tile is still intact). In (c¢) the upward sweep along the left edge is partially complete, and (d) shows the final situation.
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Fig. 13. An example of plowing: (a) determine the area to be swept
out by the motion; (b) recursively move all solid tiles out of this
area; and (c) move the original tile.

Fig. 14. Using a top-to-bottom area search with the simple plowing
algorithm, this structure will cause the rightmost tiles to be moved
many times when the cross-hatched tile is plowed to the right. Total
running time will be exponential in the circuit size.

Unfortunately, this simple algorithm suffers from terrible
worst-case behavior. Lattice structures like the one in Fig. 14
can require up to 2V recursive tile moves to clear AV tiles out
of the plow area. It seems likely that structures similar to the
one in Fig. 14 may occur in actual circuits. Fortunately, the
algorithm can be made to run in linear expected time by order-
ing the recursive processing so that a tile is not moved until its
final position is known (i.e., it is not processed until all the
tiles that can affect its final position have been processed).
The code is somewhat complex, and is different for horizontal
plowing than for veritcal plowing. Appendixes C and D de-
velop the linear time algorithm in detail. In the worst case,
the algorithms of Appendixes C and D could require MV time,
where M is the total number of tiles that have to be moved
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(b)

Fig. 15. To compact a layout horizontally, plow a large additional
tile (cross-hatched in the figure) across the layout: (a) shows the
configuration before the plow, and (b) shows the compacted con-
figuration afterwards. The tile acts like a broom and compacts as
it sweeps.

and N is the size of the circuit. In the average case they re-
quire time linear in M.

3.8 Compaction

Most existing algorithms for compaction require N? time in
the worst case for a layout containing NV elements, and have
been empirically observed to have average running time close
to N'-2 [8]. With corner stitching, compaction is linear in
the size of the layout. Compaction in a single direction can be
achieved in a simple way by plowing a large tile across the lay-
out, as shown in Fig. 15, The linear expected time for plowing
results in linear expected time for compaction. The worst-case
compaction time is still N? using corner stitching.

There are two keys to the speed of compaction in corner
stitching. The first, and most important, is that all the de-
pendencies between tiles are maintained dynamically. In other
compaction systems, the dependencies must be reconstructed
after each change to the layout; the algorithms for generating
dependencies limit the overall speed of compaction. The sec-
ond key is that the layout is planar. This means that the num-
ber of adjacencies is linear in the number of tiles, and hence,
the whole layout can be scanned in time proportional to the
number of tiles.

5.9 Channel Finding

Channel information is constantly available in the form of
the space tiles. The corner stitches make it possible to find
connected channels and thereby trace out signal paths. Of
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TABLE 1
Corner stitching requires about 40 percent more storage per tile than
linked list systems like Caesar. Only the lower and left coordinates of
each tile need be stored in corner stitching, since the upper and right
coordinates can be gotten by examining the lower and left coordinates
of neighboring tiles.

Caesar___| Corner Stitching '
t ]
. XY XY, Xy
Coordinates (iS E)yfzesf (8 blytelzs)
. 1 link 4 stitches
Fointers (4 bytes) (16 bytes)
Tile Type not needed (4 bytes) .

Total 20 bytes 28 bytes

course, some routers may prefer a different representation of
channels than maximal horizontal strips; if this is the case,
then conversion will be necessary to cast the space tiles into a
form suitable for routing.

VI. SPACE REQUIREMENTS

Because of the enormous size of VLSI designs, a data struc-
ture used for VLSI CAD must be space efficient if it is to be
effective. For example, the hierarchical representation of a
45 000-transistor chip requires about 1.5 X 10® bytes of main
memory in Caesar. Corner stitching requires more information
to be kept in the data structure than systems like Caesar.
Table I compares corner stitching to the linked-list scheme of
Caesar. Corner stitching requires three more pointers than
Caesar, plus a type field (in linked-list systems all the tiles on
a given list are of the same type). Corner stitching saves space
by storing only the lower and left coordinates of each tile, in-
stead of four coordinates: the upper and right coordinates of
a tile can be gotten from the lower and left coordinates of
neighboring tiles. As a result, corner-stitched tiles are about
40 percent larger than Caesar tiles. In addition, there are
many more tiles in corner stitching than in other systems since
corner stitching requires empty space to be represented. If
there are many space tiles, then corner stitching will require
too much space to be practical. Furthermore, most of the
algorithms depend on the tofal number of tiles in an area, in-
cluding both space and solid tiles; if there are many space tiles,
the algorithms will be inefficient.

In a circuit with N solid tiles, there will never be more than
3N+ 1 space tiles. Furthermore, the horizontal-strip repre-
sentation is at least as efficient (in the worst case) as any other
rectangle-based representation of space. In actual circuit lay-
outs, the number of space tiles is about equal to the number
of solid tiles.

The proof of the 3V + 1 upper limit is due to C. Séquin. To
see that no more than 3V + 1 space tiles are needed for N solid
tiles, place the solid tiles one at a time in order from right to
left as shown in Fig. 16. Initially there is a single space tile.
When each solid tile is placed, it can result in no more than
three new space tiles: the top and bottom edges may each
cause a space tile to be split, and a new space tile will be
created in the shadow to the left of the solid tile. Because
we place the solid tiles in order, there can be no solid tiles
in the shadow. This means that only a single space tile will
be created there. Although the solid tiles were placed in a
particular order to demonstrate the 3V + 1 limit, the final
configuration is independent of the order in which the tiles
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Fig. 16. Both (a) and (b) show that if solid tiles are inserted in order
from right to left, each tile causes no more than three additional
space tiles to be created. However, if edges of the new tile align with
edges of old tiles, an in (c), less than three additional space tiles will
be required.

are placed (the horizontal-strip property guarantees this).
Thus the result is valid regardless of the order of solid-tile
creation.

There are many other ways to organize space tiles besides
maximal horizontal strips. However, in the worst case, no
representation of space can use less than 3NV + 1 space tiles.
This worst case occurs when no two solid tiles have colinear
edges. Fig. 17 shows one such situation.

Substantially fewer than 3V +1 space tiles are needed
for actual VLSI applications. Fewer space tiles are needed
whenever edges of neighboring solid tiles align. For example,
Fig. 16(c) shows a situation where the placement of a solid
tile only adds two space tiles instead of three. In integrated
circuits, the solid tiles must touch each other to achieve elec-
trical connectivity, so the number of space tiles actually
needed is much less than 3N. Table II shows sample data

2

Fig. 17. In pathological situations where no two solid tiles have colin-
ear edges, at least 3N + 1 tiles must be used to represent space, re-
gardless of whether or not horizontal strips are used.

TABLE 11
For actual layouts, corner stitching requires about one space tile for
each solid tile. The first case consists of all the global routing for the
RISC I microprocessor (i.e., all the rectangles in the topmost cell of
the hierarchy. The routing is sparse. The second and third cases
consist of cells of another microprocessor under development.

Circuit Solid Tiles  Space Tiles _Space/Solid
Global Routing 8037 8473 1.05
ALU lLatch 177 174 .98
Register Cell 77 65 .84

gathered from three cells using a layout editor based on corner
stitching. On the average, about one space tile is required for
each solid tile. This means that the total storage required for
geometry in corner stitching will be between two and a half
and three times as great as in systems like Caesar. This result
applies even when the mask layers are sparse, as in the global
routing example.

VII. UsiNnGg CORNER STITCHING FOR REAL VLSI

The scheme presented here must be extended in several ways
to make it practical for real integrated circuits. This section
presents some of the important issues and discusses possible so-
lutions. To date, there have been two implementations of
corner stitching. A toy implementation was built using ex-
actly the model and algorithms of this paper, in order to test
the basic viability of the ideas. About 1100 lines of C code
were required to implement all the algorithms, including com-
paction, and for small test cases (100 tiles) response was in-
stantaneous for all operations.
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As a result of the successful toy implementation, we have
undertaken the development of a full-fledged VLSI layout
editor based on corner stitching. It has just recently become
operational. Although stretching and compaction have not
been implemented yet, the current system is at least as power-
ful as its predecessor, Caesar, and is being used by chip de-
signers at the University of California at Berkeley.

The first generalization of the simple scheme is to provide
for multiple mask layers. There are several ways to accom-
plish this. One alternative is to permit many different types
of solid tiles, one type for each possible combination of mask
layers. Unfortunately, this scheme will result in enormous
numbers of tiny tiles in places where several mask layers cross
each other. Many of the layer crossings are not relevant, so
the fragmentation of the tile structure wastes space unneces-
sarily (for example, it doesn’t matter where metal crosses poly-
silicon or diffusion, unless there are contact cuts present).
Another alternative is to keep a separate corner-stitched
“plane” for each mask layer. This scheme will be relatively
space efficient, but will require frequent cross-registration be-
tween planes during operations such as plowing and design-
rule checking that deal with layer interactions.

For our layout editor based on corner stitching, we used a
combination of these two schemes. The polysilicon, diffusion,
and implant layers are kept together in a single corner-stitched
plane with different types of solid tiles for each layer combi-
nation. This makes sense because most of the different combi-
nations of these layers are distinct electrically. Each metal
layer is kept in its own corner-stitched plane, since they inter-
act only weakly with each other and with the rest of the cir-
cuit. Because contacts provide a connection between layers,
they are duplicated in each of the planes that they connect.
Under this scheme, the corner-stitched representation corre-
sponds almost exactly to the electrical circuit, since the tran-
sistors (combinations of polysilicon and diffusion and im-
plants) are represented by special tile types. Furthermore,
this particular division of mask layers among planes allows
each plane to be design-rule checked independently.

To handle hierarchical designs, our layout editor keeps a
separate set of tile planes for each cell in the design. An
additional corner-stitched plane per cell is used to keep track
of the cell’s subcells. A different tile type is used in this plane
for each distinct subcell or overlap area between subcells.

Design-rule checking is trivial in the simple model. The only
design rule is that there can be no solid-tile overlap; this con-
dition is enforced by the creation and plowing routines. In
actual IC designs, the design rules will include more complex
spacing and separation rules that are different for different
tile types. For the corner-stitched editor, we have imple-
mented a simple design-rule checker similar to Lyra [1] except
that it is edge based instead of corner based. It scans a corner-
stitched plane, generates constraints at each edge based on the
tile types on either side of the edge, and uses area enumeration
to check the constraints, To handle areas of overlap between
subcells, the design-rule checker extracts information from the
separate planes of ‘the subcells into an auxiliary corner-stitched
structure and then checks the auxiliary structure.

The plow algorithm is also affected by more complex design

TABLE 111
TyPICAL AND WORST-CASE RUNNING TIMES FOR THE ALGORITHMS
M refers to the number of tiles of direct interest to the algorithm (e.g.,
the number of tiles being enumerated in area enumeration, or the
number of tiles removed in plowing). N refers to the total number of
tiles in the circuit.

Algorithm Expected Time | Worst-case Time
Point Search vN N
Point Search (with hint} constant N
Neighbor Search M M
Area Search M N
Directed Area Enumeration M N
Tile Creation constant ( N
Tile Deletion constant N
Plowing M [ MN
Compaction N i N?

rules, and must deal with connectivity as well. Although the
implementation of plowing is not yet complete, real VLSI de-
sign rules appear to be accomodated by selectively expanding
the plow area to maintain proper spacings. For example, if
the metal-metal spacing must be three units, then, when plow-
ing a metal tile, all unrelated metal must be cleared from an
area three units larger on all sides than the area swept out by
the tile’s motion. Connectivity appears to be handled by se-
lectively stretching or shrinking some tiles, rather than moving
them.

In some industrial environments, the Manhattan restriction
may be intolerable. Where this is the case, it may be possible
to accomodate 45°-angles by using trapezoids instead of rec-
tangles. Degenerate trapezoids can be used to represent tri-
angles. We do not plan to implement non-Manhattan features
in our system, since in our environment, the Manhattan re-
striction is acceptable (and even desirable, since it tends to
simplify designs and make tools run two to ten times faster).
The Manhattan design style seems to be gaining more and
more acceptance in the integrated circuit design community
as a whole. For example, the Caesar editor, which is Manhat-
tan, is now being used at nearly 200 industrial and university
sites.

VIII. ConcLuSION

Corner stitching is a powerful technique for representing
geometrical data. Its two most important features are a) it re-
presents empty space explicitly, and b) it links together tiles
of various types at their corners, These two features make it
possible to implement a variety of important operations that
operate purely locally. The efficiency of the algorithms de-
pends only on local information and not on the overall circuit
size. The database can be modified incrementally, so that one
portion of the design can be changed without invalidating the
pointer information of any other piece of the design. Corner
stitching is effective both for densely packed circuits and for
sparse ones. See Table III for a summary of the complexity
of the various algorithms,

The main drawback of the mechanism is that it requires
approximately three times as much storage as simple mech-
anisms. Fortunately, designers tend to focus their attention
on a small portion of a layout at any given time; since corner
stitiching uses only local information, it will have good paging
behavior in a demand-paded environment.
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APPENDIX A
ADJACENCIES

The running time for several of the algorithms depends on
the number of neighbors an individual tile has. One can con-
struct situations where a tile has an arbitrarily large number of
neighbors, so it is not possible to state any absolute upper
bounds. However, graph theory can be used to determine the
average number of adjacencies. In any connected planar graph

n-et+tf=1

where n is the number of nodes, e is the number of edges, and
fis the number of faces contained by the edges. A face corre-
sponds to a tile, a node to a corner of a tile, and an edge to a
distinct adjacency between two tiles. For T tiles, f=T. The
number of distinct nodes n can be at most 47, but in the in-
terior of the tile structure, each corner of one tile must coin-
cide with at least one corner of another tile (a *“T” structure).
Thus n < 2T and the total number of adjacencies is

e=n+f-1<3T-1.

Note that at the outside of the structure there may be corners
that don’t coincide with other corners, but for each of these
there is also as least one edge that doesn’t represent an adja-
cency (because there is no tile on the other side). Hence the
37 - 1 upper limit is not affected.

The 37 - 1 limit counts each adjacency only once for the
two tiles that are adjacent. To compute the number of neigh-
bors per tile, the figure must be doubled. This means that on
the average, an individual tile will have about six neighbors,
or about one or two on each side. This is regardless of the
arrangement of tiles. Of course, if there are many tiles of
different sizes, the large tiles may have many more than six
neighbors. The average number of neighbors of a tile in a
situation like this will be roughly proportional to the perim-
eter of the tile, which is less than linear in its area.

APPENDIX B
SPLITTING AND MERGING

This section discusses the cost of splitting one tile into two
adjacent tiles, or merging two adjacent tiles into a single tile.
A tile can be split into two tiles as follows:

1) Make an exact copy of the original tile.

2) Update the coordinates of each tile to reflect the split,
and set the tiles’ corner stitches to refer to each other.

3) Update the corner stitches in tiles that are now adjacent
to the new tile. To do this, use the neighbor-finding algorithm
to locate the neighbors on three sides of the original tile, then
update the stitches that must point to the new tile.

The algorithm for merging two adjacent tiles into a single
larger tile is similar: stitches must be updated along three sides
of the tile that is eliminated.

The cost of each algorithm consists of constant factors
(copying a tile or changing an x or y coordinate) and the
search of neighbors on three sides. Appendix A showed that
the number of neighbors was constant when averaged across a
whole design, but increases for those tiles that are much larger

Fig. 18. An example of visibility searching. From tile X, tiles 4, B, C,
and D are visible to the right. Tile £ is not visible from X. Tile D
has two distinct windows of visibility to X, one between 4 and B
and one below C. During a horizontal visibility search from X, the
pictured corner stitches will be traversed.

than their neighbors. In this case, the average number of
neighbors will be approximately proportional to the perimeter
of the tile. Thus the cost of a split or merge is constant if the
tile being split or merged is about the same size as its neigh-
bors. If the tile is much larger than its neighbors, then the cost
increases in proportion to the tile’s perimeter, which is less
than linear in its area.

ApPENDIX C
VISIBILITY SEARCHING

This section gives algorithms that locate all solid tiles visible
on one side of a given solid tile. Two solid tiles are mutually
visible if it is possible to draw a horizontal or vertical line be-
tween them without crossing any other solid tiles. Fig. 18
gives examples of visible and invisible tiles. Visibility searching
is used during compaction and stretching. Unfortunately, the
horizontal-strip representation of space requires different al-
gorithms for horizontal and vertical searches.

Horizontal-visibility searching is based on the neighbor-find-
ing algorithm of Section V-5.2. The following algorithm is for
searching on the right side of the original tile; it can be modi-
fied to search on the left side.

1) Use the neighbor-finding algorithm to enumerate the tiles
that touch the right side of the starting tile. For each tile
found, execute step 2) or step 3), depending on the tile’s type.

2) If the neighbor is solid, then it is automatically visible.

3) The neighbor is a space tile. If it extends all the way to
the edge of the circuit (infinity) ignore it. Otherwise, use the
neighbor-finding algorithm once again to enumerate all the
tiles that touch its right side. Each of these must be a solid
tile. All of the tiles whose bottom edges are lower than the
top edge of the starting tile are visible.

In this algorithm, a single solid tile may be enumerated sev-
eral times, once for each distinct window of visibility with the
starting tile (see, for example, tile D in Fig. 18). The time
required for the horizontal search is linear in the total number
of tile adjacencies in the search area, which was shown in
Appendix A to be linear in the number of tiles. Since there
must be at least one solid tile enumerated for every space
tile enumerated, the expected running time of the search is
linear in the number of solid tiles found. For tiles in a rela-
tively uniform distribution, the number of visible neighbors
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Fig. 19. A pathological case for horizontal visibility searching. When
searching for tiles visible to the right of X, all of the tiles above A
will have to be passed through and skipped over.

Fig. 20. In a downward visibility search from X, columns of space
tiles are traversed until solid tiles are found or the end of the circuit
is reached. In this case, the numbers give the order in which the
tiles will be traversed (the numbering ignores realignments that must
occur when advancing down the side of a column). Tiles that fall
under more than one column are traversed more than one time.

of a given tile is small and independent of the size of the cir-
cuit. However, if a space tile found in step 3) extends above
the starting tile, as in Fig. 19, it could have any number of
out-of-range solid tiles along its right edge; since these have
to be skipped over, the upper limit on the running time for
the algorithm is the total number of solid tiles in the circuit.

For vertical visibility searches, the algorithm is an extension
of the area-search algorithm of Section V-5.3. It consists of a
recursive set of searches of successively thinner columns. The
following algorithm will find all the solid tiles visible below
the starting tile; it can be modified to find all those above the
starting tile. See Fig. 20 for an example.

1) The intial column being searched extends downward
from the bottom of the starting tile. Use the approach of the
area-searching algorithm to advance one by one through the
tiles lying under the left edge of this column.

2) When a space tile is found in step 1), check to see if it
extends across the whole column. If so, then advance down-
wards to the next tile (this is the case for tiles 1 and 2 in Fig.

Fig. 21. Tile S causes severe misalignment during downward visibility
searches from X. Each of tiles £-J will have to be traversed for each
column between tiles 4-D.

20).
return.

3) If a solid tile is found, or if the space tile does not extend
across the entire column, then do not continue down any fur-
ther. Instead, scan across the top of the column (following tr
stitches from the tile found in step 1). Each of the solid tiles
found in this way is visible to the starting tile. For each space
tile found in this scan, invoke a recursive search on the column
underneath this space tile (tiles 3 and 12 in Fig. 20 are exam-
ples of space tiles that start new column searches).

If the space tile extends downward to -infinity, then

The algorithm terminates when all of the columns have been
closed off by continuous solid tiles across the columns or
when the end of the circuit (infinity) is reached. As with the
horizontal search, tiles are enumerated once for each window
of visibility with the starting tile. Since each of the visible
tiles is visited once for each window of visibility, the expected
running time is linear in the number of visible tiles (for rela-
tively uniform tile distributions). However, the same misalign-
ment that was illustrated in Fig. 9 for area searching can occur
here, as shown in Fig. 21. In the unlikely event that most of
the tiles in the circuit are piled up like tiles £-/ in Fig. 21, they
will all have to be traversed as part of each column, and the
total running time will be proportional to the product of total
circuit size and number of visible tiles.

Each of the visibility algorithms works in a particular direc-
tion. The directed nature is important to other algorithms
that use visibility searches. The right visibility search enumer-
ates visible tiles in order from top down, and the bottom visi-
bility search enumerates visible tiles in order from left to right.

AprpENDIX D
PLowING IN LiNEAR TIME

The poor worst-case behavior of the plowing algorithm in
Section 5.7 occurred because the algorithm processed tiles in
a haphazard order. As a result, some tiles could be moved
many times as the algorithm discovered that more and more
space was needed to move other tiles out of the plow area.
The linear-time algorithm makes two passes over the circuit.
In the first pass, it computes how far each tile must move;
tiles are processed in topological order so that a given tile
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is not processed until its final position is known. In the
second pass, the tiles are actually moved. Each tile is moved
exactly once.

The linear-time algorithm requires an extra data value to be
stored in each tile. This additional value is called the tile’s
delta, and gives the distance that the tile must be moved. Ini-
tially, all of the deltas are zero; when the plowing algorithm
is finished, it leaves all the deltas zero for future plowing. The
linear-time algorithm also requires the use of a linked list of
tiles to be moved. Tiles are added to the linked list in the first
pass; in the second pass, tiles are moved in list order.

Pass 1 consists of setting the delta of the initial tile to its
plow distance and calling the following recursive procedure to
process the tile. The basic algorithm is independent of the
plow direction.

1) Add a pointer to the current tile onto the front of the
list of tiles to be moved. This tile will be moved before all
previously encountered tiles,

2) Use the tile’s delta and location to compute the area
that this tile will plow out as it moves.

3) Use the visibility search from Appendix C to enumerate
all visible solid tiles in the plow area. Execute steps 4) and 5)
for each neighbor tile found in this way.

4) Compute the delta required to move the tile out of the
plow area. If this delta is greater than the tile’s current delta,
then update the tile’s current delta.

5) If this is the last time we will ever see the neighbor, then
call this procedure recursively to process the neighbor. The
determination of “last time” depends on the directed nature
of the algorithms for visibility searching. For example, in a
left-to-right compaction, the “last time” is when the neigh-
bor’s bottom edge is in the window of visibility, or when the
bottom edge of the overall plow area is in the window of visi-
bility. The bottom edge of the overall plow area must be
passed down in the recursive calls; it is the lowest bottom edge
for any plow on the recursive stack.

Pass 2 scans the list in order from front to back. Each tile
on the list is erased, then recreated at a new position deter-
mined by its delta. The ordering of the list guarantees that
the final position of each tile is empty at the time it is moved.
When moving the tiles, the deltas are zeroed out again in prep-
aration for the next plowing operation.

If the total number of tiles moved is M and the total number
of tiles in the circuit is /V, then each of the two passes has an
expected running time that is of order M, with worst-case run-
ning time proportional to MN, In pass 1, the recursive pro-
cedure is invoked exactly M times (once for each tile that must
be moved). The overall running time for pass 1 is determined
by the time spent in enumerating all the visible neighbors for
all the tiles that are moved. In the average case, each tile’s
visible neighbors can be found in constant time, so the total
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running time is proportional to M. In the worst case, the cost
of the visibility searches may be MY, so the worst-case running
time of pass 1 is of order MN.

For pass 2, the expected time to delete or create each tile
is constant, so the expected running time is linear in M. How-
ever, the worst-case deletion or creation time for a tile is
proportional to the overall circuit size, so the worst-case run-
ning time for pass 2 is of order MN.
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